

Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina Date : 14/12/2011 Page : 1/9 Clé : V6.04.174 Révision : 08d9b83f4215

Version

default

# SSNV174 - Taking into account of the endogenous withdrawal and the withdrawal of desiccation in the models BETON\_UMLV\_FP and BETON\_BURGER\_FP

#### Summary:

This test makes it possible to validate the taking into account of the endogenous withdrawal and desiccation in the laws of behavior <code>BETON\_UMLV\_FP</code> and <code>BETON\_BURGER\_FP</code>. The results of this test are compared with a digital solution obtained with Scilab 2.7.2. in the case of a modeling <code>3D</code> (<code>BETON\_UMLV\_FP</code>) and a digital solution obtained with python for <code>BETON\_BURGER\_FP</code> (SSNV174B.44).

Modeling a: endogenous Creep test with withdrawals and desiccation for the model BETON\_UMLV\_FP Modeling b: endogenous Creep test with withdrawals and desiccation for the model BETON BURGER FP

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 2/9 Clé : V6.04.174 Révision 08d9b83f4215

**1** Problem of reference

### 1.1 Geometry



| Height:    | h = 1,00[m] |
|------------|-------------|
| Width:     | l = 1,00[m] |
| Thickness: | e = 1,00[m] |

#### 1.2 Properties of material

| E = 31 [GPa]                                   | modulus of elasticity                    |
|------------------------------------------------|------------------------------------------|
| v =0,2                                         | Poisson's ratio                          |
| $k_{re} = 60 \left[ \mu m / m \right]$         | endogenous coefficient of withdrawal     |
| $k_{rd} = 10 [\mu m / m . m^3 / l]$            | coefficient of withdrawal of desiccation |
| $\alpha = 10 \left[ \mu m/m/^{\circ}C \right]$ | thermal dilation coefficient             |

Here one informs also the curved sorption-desorption which connects the water content C with the hygroscopy h.

In this case one supposed that the two quantities were connected by the following linear relation:  $C [l/m^3] = h [\%]$ .

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 3/9 Clé : V6.04.174 Révision 08d9b83f4215

Parameters specific to BETON UMLV FP:

| $k_r^s = 1,20E + 5 [MPa]$                                                                        | spherical part: rigidity connects associated with the skeleton formed by |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                  | blocks with hydrates on a mesoscopic scale                               |
| $k_{i}^{s} = 6.22E + 4 [MPa]$                                                                    | spherical part: rigidity connects intrinsically associated with the      |
|                                                                                                  | nydrates on a microscopic scale                                          |
| $k^{d} = 3.86E + 4 [MPa]$                                                                        | deviatoric part: rigidity associated with the capacity with water        |
| $\kappa_r = 5,002 + 4 [102 ]$                                                                    | adsorbed to transmit loads (load bearing toilets)                        |
| $m^{s} = 2.21E \pm 10$ [ <i>MPa</i> s]                                                           | spherical part: viscosity connects associated with the mechanism with    |
| $\eta_r = 2,21E \pm 10$ [ <i>WI</i> u.s]                                                         | diffusion within capillary porosity                                      |
| $= \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \right] \right] \right]$ | spherical part: viscosity connects associated with the mechanism with    |
| $\eta_i^* = 4,16E + 10 \ [MPa.s]$                                                                | diffusion interlamellaire                                                |
| d crop to [100]                                                                                  | deviatoric part: viscosity associated with the water adsorbed by the     |
| $\eta_r^a = 6,19E + 10 \ [MPa.s]$                                                                | lavers with hydrates                                                     |
| 1 5 7                                                                                            | doviatorio part: viscositu of froo wator                                 |
| $\eta_i^a = 1,64E + 12 \ [MPa.s]$                                                                | deviatione part. Viscosity of nee water.                                 |
|                                                                                                  |                                                                          |

Parameters specific to BETON BURGER FP:

| $k_r^s = 1,20E + 5 \ [MPa]$       | spherical part: rigidity connects associated with the reversible field with the differed deformations                        |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $k_r^d = 3,86E + 4 \ [MPa]$       | deviatoric part: rigidity associated associated with the reversible field with the differed deformations                     |
| $\eta_r^s = 2,21E + 10 \ [MPa.s]$ | spherical part: viscosity connects associated with the reversible field with the differed deformations                       |
| $\eta_i^s = 4,16E + 10 \ [MPa.s]$ | spherical part: viscosity connects associated with the irreversible mechanism of diffusion                                   |
| $\eta_r^d = 6,19E + 10 \ [MPa.s]$ | deviatoric part: viscosity associated with the reversible field with the differed deformations                               |
| $\eta_i^d = 1,64E + 12 \ [MPa.s]$ | deviatoric part: viscosity connects associated with the irreversible mechanism of diffusion                                  |
| $\kappa = 3.0 \times 10^{-3}$     | Normalizes unrecoverable deformations controlling to it not linearity<br>applied to the module of the long-term deformations |

#### **1.3 Boundary conditions and loadings**

In this test, one creates a homogeneous field of drying in the structure varying linearly over duration a 750 days, initial moisture is worth 100% (condition of a sealed test-tube) and decrease gradually until 50% to the 750<sup>ème</sup> day.

The degree of hydration varies linearly from 0 to 1 between the initial moment and the 28<sup>ème</sup> day.

The mechanical loading corresponds to an one-way compression according to the vertical direction (z in 3D); its intensity is of 12[MPa]. The load is applied in 1s and is maintained constant for 100 days.

#### **1.4** Initial conditions

The beginning of calculation is supposed at the moment -1. At this moment there is neither field of drying, nor forced mechanical.

To moment 0, one applies a field of drying corresponding to 100% of hygroscopy, a field of hydration corresponding to a null advance and a thermal field at the temperature of reference.

Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina Date : 14/12/2011 Page : 4/9 Clé : V6.04.174 Révision 08d9b83f4215

Version

default

### 2 Reference solution

### 2.1 Method of calculating

One did not develop the analytical solution for this hydro-mechanical loading. Also, the reference solution is obtained numerically by using the software Scilab 2.7.2 for <code>BETON\_UMLV\_FP</code> or python for <code>BETON\_BURGER\_FP</code>. Each component of deformation is calculated separately:

- the deformations of endogenous withdrawal are given starting from the relation:
  - $\varepsilon_{re} = k_{re} \cdot \beta$  where  $\beta$  indicate the degree of hydration of material
- the deformations of withdrawal of desiccation are given starting from the relation:
  - $\dot{\varepsilon}_{rd} = k_{rd} \cdot C$  where C indicate the water content of material
- the deformations of clean creep are calculated numerically by using a discretization identical to that established in *Code\_Aster* for BETON\_UMLV\_FP and an establishment according to a diagram clarifies for BETON\_BURGER\_FP. The temporal discretization is then necessarily finer for the explicit diagram.

#### 2.2 Sizes and results of reference

The test is homogeneous. One tests the deformation in an unspecified node.

#### 2.3 Uncertainties on the solution

Digital result got with Scilab 2.7.2 or python (SSNV174B.44)

#### 2.4 Bibliographical references

- [1] POPE Y.: Relation of behavior UMLV for the clean creep of the concrete, Reference material of *Code\_Aster*, [R7.01.06] 16 p (2002).
- [2] FOUCAULT A.: Relation of behavior BETON\_BURGER\_FP for the clean creep of the concrete, Reference material of Code-Aster, [R7.01.35], 2011.

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 5/9 Clé : V6.04.174 Révision : 08d9b83f4215

### 3 Modeling A

### 3.1 Characteristics of modeling

Modeling 3D



### 3.2 Characteristics of the grid

| Many nodes: | 8              |   |
|-------------|----------------|---|
| Many meshs: | 1 of type HEXA | 8 |
|             | 6 of type QUAD | 4 |

The following meshs are defined:

| S_ARR | <i>NO3 NO7 NO8 NO4</i> |
|-------|------------------------|
| S_AVT | <i>NO1 NO2 NO6 NO5</i> |
| S_DRT | <i>NO1 NO5 NO8 NO4</i> |
| S_GCH | <i>NO3 NO2 NO6 NO7</i> |
| S_INF | <i>NO1 NO2 NO3 NO4</i> |
| S SUP | NO5 NO6 NO7 NO8        |

The boundary conditions in displacement imposed are:

| On the nodes | NO1,         | <i>NO2</i> , | NO3        | and | <i>NO4</i> : | DZ=0   |
|--------------|--------------|--------------|------------|-----|--------------|--------|
| On the nodes | <i>NO3</i> , | <i>NO7</i> , | <i>NO8</i> | and | <i>NO4</i> : | DY = 0 |
| On the nodes | <i>NO2</i> , | <i>NO6</i> , | NO7        | and | <i>NO8</i> : | DX = 0 |

The loading is consisted by the same field of drying and of the same nodal force, 1/4 applied to the four nodes of  $S\_SUP$ .

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 6/9 Clé : V6.04.174 Révision 08d9b83f4215

### 3.3 Sizes tested and results

One tests the deformations obtained with the node  $N6 \mod Ml$  .

| Identification                | Type of reference | Value of reference | Tolerance |
|-------------------------------|-------------------|--------------------|-----------|
| $\epsilon_{zz}$ with the node | 'ANALYTICAL'      | 0.0                | -         |
| NO6 at moment 0.0             |                   |                    |           |
| $\epsilon_{zz}$ with the node | 'ANALYTICAL'      | -4.07E-04          | 0,50%     |
| NO6 at moment                 |                   |                    |           |
| 64800                         |                   |                    |           |
| $\epsilon_{zz}$ with the node | 'ANALYTICAL'      | -5.16E-04          | 0,50%     |
| NO6 at moment                 |                   |                    |           |
| 648000                        |                   |                    |           |
| $\epsilon_{zz}$ with the node | 'ANALYTICAL'      | -8.13E-04          | 0,50%     |
| NO6 at moment                 |                   |                    |           |
| 6480000                       |                   |                    |           |
| $\epsilon_{zz}$ with the node | 'ANALYTICAL'      | -1.37E-03          | 0,50%     |
| NO6 at moment                 |                   |                    |           |
| 64800000                      |                   |                    |           |

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 7/9 Clé : V6.04.174 Révision : 08d9b83f4215

### 4 Modeling B

### 4.1 Characteristics of modeling

Modeling 3D



### 4.2 Characteristics of the grid

| Many nodes: | 8              |   |
|-------------|----------------|---|
| Many meshs: | 1 of type HEXA | 8 |
|             | 6 of type QUAD | 4 |

The following meshs are defined:

| S_ARR | <i>NO3 NO7 NO8 NO4</i> |
|-------|------------------------|
| S_AVT | <i>NO1 NO2 NO6 NO5</i> |
| S_DRT | <i>NO1 NO5 NO8 NO4</i> |
| S_GCH | <i>NO3 NO2 NO6 NO7</i> |
| S_INF | <i>NO1 NO2 NO3 NO4</i> |
| S SUP | NO5 NO6 NO7 NO8        |

The boundary conditions in displacement imposed are:

| On the nodes | NO1,         | <i>NO2</i> , | NO3        | and | <i>NO4</i> : | DZ=0   |
|--------------|--------------|--------------|------------|-----|--------------|--------|
| On the nodes | <i>NO3</i> , | <i>NO7</i> , | <i>NO8</i> | and | <i>NO4</i> : | DY = 0 |
| On the nodes | <i>NO2</i> , | <i>NO6</i> , | NO7        | and | <i>NO8</i> : | DX = 0 |

The loading is consisted by the same field of drying and of the same nodal force, 1/4 applied to the four nodes of  $S\_SUP$ .

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina* 

08d9b83f4215

### 4.3 Sizes tested and results

One tests the deformations obtained with the node  $N6 \mod M1$ .

| Identification                    | Type of reference | Value of reference | Tolerance |
|-----------------------------------|-------------------|--------------------|-----------|
| $\epsilon_{\pi\pi}$ with the node | 'ANALYTICAL'      | 0.0                | -         |
| NO6 at moment 0.0                 |                   |                    |           |
| $\epsilon_{zz}$ with the node     | 'ANALYTICAL'      | -3.87E-04          | 0.50%     |
| NO6 at moment 1.0                 |                   |                    |           |
| $\epsilon_{zz}$ with the node     | 'SOURCE_EXTERNE'  | -4.13E-04          | 0,50%     |
| <i>NO6</i> at moment              |                   |                    |           |
| $\epsilon_{zz}$ with the node     | 'SOURCE_EXTERNE'  | -5.73E-04          | 0,50%     |
| <i>NO6</i> at moment 648000       |                   |                    |           |
| $\epsilon_{zz}$ with the node     | SOURCE_EXTERNE'   | -1.27E-03          | 0,50%     |
| <i>NO6</i> at moment 6480000      |                   |                    |           |
| $\epsilon_{zz}$ with the node     | 'SOURCE_EXTERNE'  | -3.45E-03          | 0,50%     |
| <i>NO6</i> at moment 64800000     |                   |                    |           |

*Titre : SSNV174 - Prise en compte du retrait endogène et d[...] Responsable : BOTTONI Marina*  Date : 14/12/2011 Page : 9/9 Clé : V6.04.174 Révision : 08d9b83f4215

### 5 Summary of the results

Values obtained with *Code\_Aster* are in agreement with the digital values of the solution of reference.