Responsable: DELMAS Josselin Clé: V7.12.303 Révision

7853852b100a

Date: 03/07/2013 Page: 1/6

HSLA303 - Cylinder under pressure and thermal dilation

Summary:

Calculation is carried out into axisymmetric. The goal of the test is to validate them predeformations (keyword PRE EPSI).

The cylinder is subjected to a homogeneous thermal dilation (ΔT constant).

The followed procedure is the following one:

- that is to say ϵ_1 the field of deformations resulting from one 1er calculation, the cylinder being subjected to a homogeneous thermal dilation ΔT (U_1 the field of resulting displacements),
- in the second calculation, the cylinder is subjected to an internal pressure, with like predeformations the field of deformations $\, \epsilon_{\scriptscriptstyle 1} \,$ (either $\, U_{\scriptscriptstyle 2} \,$ the resulting field of displacements),
- one then compares the results with the field $\,U_{\,{}}$, obtained with cylinder under pressure, but without predeformations. One must have the relation: $U_2 = U + U_1$.

Date: 03/07/2013 Page: 2/6 Responsable: DELMAS Josselin Clé: V7.12.303

Révision 7853852b100a

Problem of reference

1.1 Geometry

Length: L=1 mThickness: $h = 0.0025 \, m$ External ray: Re = 0.05 m

1.2 **Material properties**

$$E = 2.1 \times 10^{11} Pa$$

v = 0.3

 $\alpha = 0.12 \times 10^{-4} / {}^{\circ}C$

1.3 **Boundary conditions and loadings**

- Section AB in support (direction z),
- Thermal dilation in the thickness (calculation 1): $\Delta T = 100 \,^{\circ} C$
- Internal pressure (calculation 2): $p = 2 \times 10^8 N/m^2$
- Taking into account of the basic effect.

1.4 **Initial conditions**

Without object for the static analysis.

Responsable : DELMAS Josselin Clé : V7.12.303 F

Révision 7853852b100a

Date: 03/07/2013 Page: 3/6

2 Reference solution

2.1 Method of calculating used for the reference solution

The deformation due to direct compression is given by:

$$\varepsilon_{zz} = \frac{(1-2v)(2R_e - h)}{4Eh} p = 3.714 \times 10^{-3}$$
 , $R_e = \text{ external ray}$

· Axial displacement due to the pressure is given by:

$$U_z = Z \varepsilon_{zz}$$

• The deformations due to the thermal loading are worth:

$$\varepsilon_{rr} = \varepsilon_{\theta\theta} = \varepsilon_{zz} = \alpha \Delta T = 1.2 \times 10^{-3}$$

• Radial displacement due to the thermal loading is worth:

$$U_r = r \, \varepsilon_{rr} = 1.2 \times 10^{-3} \, r$$

2.2 Results of reference

- Deformation and radial and axial displacement at the points A, B, C, D had with the thermal loading.
- Deformation and axial displacement at the points A, B, C, D had with the pressure.

2.3 Uncertainty on the solution

Analytical solution.

Responsable : DELMAS Josselin

Date: 03/07/2013 Page: 4/6 Clé: V7.12.303 Révision

7853852b100a

3 Modeling A

3.1 Characteristics of modeling

AXIS, mesh Q8

Cutting: 10 elements according to the length

1 element in the thickness

Limiting conditions:

```
in A , B DDL_IMPO = (GROUP_NO = 'WITH', DY = 0. ) DDL IMPO = (GROUP NO = 'B', DY = 0. )
```

Pressure + basic effect: field $\,U\,$

Thermal dilation: field U_1

Predeformations: field U_2

```
PRE_EPSI: (ALL = 'YES', EPXX = 1.2E-3, EPYY = 1.2E-3, EPZZ = 1.2E-3, EPXY = 0.)
```

0. , NOM VARC = 'TEMP',)

Names of the nodes:

$$A=N1$$
 $B=N2$ $C=N3$ $D=N4$

3.2 Characteristics of the grid

Many nodes: 53

Many meshs and types: 10 QUAD8, 22 SEG3

3.3 Sizes tested and results

Results concerning the fields U_1 , U_2 , U

Responsable : DELMAS Josselin

Date : 03/07/2013 Page : 5/6 Clé : V7.12.303 Révision

7853852b100a

Field	Localization	Variables	Reference
Thermal field $U_{\scriptscriptstyle 1}$	A	Ur(DX)	5.7 X 10 ⁻⁵
	B	Ur(DX)	6 X 10 ⁻⁵
	C	Ur(DX)	6 X 10 ⁻⁵
		DY	1.2 X 10 ⁻³
	D	Ur(DX)	5.7 X 10 ⁻⁵
	4	U(DY)	1.2 X 10 ⁻³
	A , mesh $\it M1$	ε _{rr}	1.2 X 10 ⁻³
		$\epsilon_{\theta \theta}$	1.2 X 10 ⁻³
		٤	1.2 X 10 ⁻³
	$\it B$, mesh $\it M1$	ε _{rr} .	1.2 X 10 ⁻³
		$\varepsilon_{\theta\theta}$	1.2 X 10 ⁻³
		٤_zz	1.2 X 10 ⁻³
	C , mesh $M10$	ε _{rr}	1.2 X 10 ⁻³
		$\varepsilon_{\theta\theta}$	1.2 X 10 ⁻³
		٤	1.2 X 10 ⁻³
	D , mesh $M10$	٤,,,	1.2 X 10 ⁻³
		$\epsilon_{\theta \theta}$	1.2 X 10 ⁻³
		٤	1.2 X 10 ⁻³
Field of pressure U	C	$U_{\theta}(DY)$	3,714 X 10 ⁻³
	D	$U_{\theta}(DY)$	3,714 X 10 ⁻³
	$\it C$, mesh $\it M10$	$\varepsilon_{\theta \theta}$	3,714 X 10 ⁻³
	D , mesh $M10$	٤θθ	3,714 X 10 ⁻³
Field U_{2}	C	$U_{_{ heta heta}}$	4,914 X 10 ⁻³
	D	$U_{_{m{ heta}m{ heta}}}$	4,914 X 10 ⁻³
	${\it C}$, mesh	εθθ	4,914 X 10 ⁻³
	D , mesh	$\varepsilon_{\theta \theta}$	4,914 X 10 ⁻³

3.4 Remarks

- The goal of the test is not to obtain a high degree of accuracy on the level of the results, but simply to check the relation: $U_2 = U + U_1$; so calculation was carried out only with one coarse grid.
- It is noted that the required relation is well checked at the loose lead of the cylinder.
- It is checked in addition that the field of deformation resulting from thermal dilation is uniformly equal to 1.2×10^{-3} .

Code Aster

Titre: HSLA303 - Cylindre sous pression et dilatation the[...]

Responsable: DELMAS Josselin

Date: 03/07/2013 Page: 6/6 Clé: V7.12.303

Révision 7853852b100a

Summary of the results 4

The option PRE EPSI (predeformations into constant) provides completely satisfactory results.