

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 1/37 Clé : U4.81.04 Révision : 88257bba5486

Operator CALC_CHAMP

1 Goal

To create or supplement one result by calculating fields by element or with the nodes (forced, deformations,...).

The concept produced result either is created, or modified, i.e. the call to CALC_CHAMP is done in the following way:

```
resu = CALC_CHAMP ( RESULT = resu..., reuse = resu,...)
or
resu1 = CALC CHAMP ( RESULT = resu,...)
```

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

:

Date : 22/05/2018 Page : 2/37 Clé : U4.81.04 Révision 88257bba5486

Contents

<u>1 Goal</u>	1
2 Syntax	<u>3</u>
2.1 Operands RESULTAT/MODELE/CHAM_MATER/CARA_ELEM/EXCIT	9
2.1.1 Operands RESULT	9
2.1.2 Operands MODEL/CHAM_MATER/CARA_ELEM	<u>9</u>
2.1.3 Keyword EXCIT	9
2.2 Selection of the meshs concerned with calculation	9
2.3 Selection of the sequence numbers	10
2.4 Localization of the fields	10
2.5 Dependence of the fields	11
2.6 Operands for the mechanical options	11
2.6.1 Options of calculation of the constraints (Operand CONSTRAINT)	11
2.6.2 Options of calculation of the deformations (Operand DEFORMATION)	14
2.6.3 Options of extraction of the internal variables (Operand VARI_INTERNE)	<u>15</u>
2.6.4 Options of calculation of energy (Operand ENERGY)	17
2.6.5 Options of calculation of criteria (Operand CRITERIA)	20
2.6.6 Option of calculation of hydraulic flows (Operand HYDRAULICS)	24
2.6.7 OptionS dependent on the parameters of calculation (Operand PROPRIETES)	25
2.7 Operands for the thermal options	25
2.7.1 Operand THERMICS	25
2.8 Operands for the acoustic options	<u>26</u>
2.8.1 Operand ACOUSTICS	<u>26</u>
2.9 Operand for the nodal forces and reactions	27
2.9.1 Operand FORCE	27
2.9.2 Example 1: structure charged with nodal force (2 elements QUAD4)	31
2.9.3 Example 2: structure with loading of temperature	32
2.9.4 Example 3: structure under loading distributed (beam)	<u>33</u>
2.9.5 Example 4: calculation of the reactions of support at the bottom of a stopping	34
2.10 Calculation of a field user	
2.10.1 Operand NOM_CHAM	<u>36</u>
2.10.2 Operand CRITERION	<u>36</u>
2.10.3 Operand FORMULA	<u>36</u>
2.10.4 Operand NORMALIZES	36
2.10.5 Operand NUME_CHAM_RESU	37
2.10.6 Example of calculation of a field user	
2.11 Operand TITLE	<u>37</u>

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 3/37 Clé : U4.81.04 Révision 88257bba5486

2 Syntax

[*] = CALC CHAMP resu ◊ reuse = resu, (♦ MODEL = Mo, [model] \diamond CHAM MATER = chmater, [cham mater] \diamond CARA ELEM = carac, [cara elem] ♦ EXCIT = $_F$ (♦ LOAD = 1_charge, [l char meca] [R] \diamond / COEF MULT = cm, / FONC MULT = Fm, [function] # if result of the evol noli type ◊ TYPE CHARGE =/ 'FIXE CSTE', [DEFECT] / 'FIXE PILO', / 'SUIV', / 'DIDI' # if not ♦ TYPE CHARGE =/ 'FIXE CSTE', [DEFECT] # if result of the dyna * type, * gene, *acou* ◊ PHAS DEG = / phas_deg [R] / 0. [DEFECT] ◊ PUIS PULS =/ puis_puls [I] / 0 [DEFECT] \$ FONC_MULT_C = / fonc_mult_c[function] ♦ COEF MULT C = / coef mult c[C]) # Selection of the meshs concerned with calculation \Diamond / ALL = 'YES', [DEFECT] / GROUP MA = l grma, [l gr maille] \Diamond # Selection of the sequence numbers TOUT ORDRE = 'YES', / NUME ORDRE = / l nuor, [l I] / LIST_ORDRE = l_nuor , [listis] NUME MODE = l numo , [l I] / NOEUD_CMP = l_nomo, NOM_CAS = nocas, [l K16] / / [K16] INST = l_inst,
FREQ = l_freq, [l R] / [l R] / LIST INST = l inst, [listr8] / LIST FREQ = 1 freq, [listr8] / 'RELATIVE', | CRITERION = \Diamond [DEFECT] / 'ABSOLUTE', PRECISION = / prec, / 1.0E-6, [DEFECT]

options for linear mechanical results

♦ RESULT = resu,

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 4/37 Clé : U4.81.04 Révision 88257bba5486

options of calculation of the constraints (elements of continuous medium 2D # and 3D) 'EFGE ELGA' \Diamond CONSTRAINT = 'EFGE ELNO' 'EFGE NOEU' 'SIEF_ELGA' 'SIEF ELNO' 'SIEF_NOEU' 'SIGM ELGA' 'SIGM ELNO' 'SIGM_NOEU' 'SIPM _ELNO' 'SIPO ELNO' 'SIPO NOEU' 'SIRO ELEM' I options of calculation of the deformations # \Diamond 'DEGE ELGA' DEFORMATION = 'DEGE ELNO' 'DEGE NOEU' 'EPME ELGA' 'EPME ELNO' 'EPME NOEU' 'EPSG ELGA' 'EPSG ELNO' 'EPSG_NOEU' 'EPSI ELGA' 'EPSI_ELNO' 'EPSI_NOEU' 'EPVC_ELGA' 'EPVC ELNO' 'EPVC NOEU' I # options of calculation of energies \Diamond ENERGY = 'DISS ELEM' 'DISS ELGA' 'DISS ELNO' 'DISS NOEU' 'ECIN ELEM' 'ENEL ELEM' 'ENEL ELGA' 'ENEL ELNO' 'ENEL_NOEU' 'ENTR ELEM' 'EPOT_ELEM' 'ETOT_ELEM' 'ETOT ELGA' 'ETOT ELNO' I 'ETOT NOEU'

options of calculation of criteria

\diamond	CRITERIA =	'EPEQ ELGA'
		'EPEQ_ELNO'
		'EPEQ_NOEU'
		`EPMQ ELGA'

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version 13

Code Aster

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 5/37 Révision Clé : U4.81.04 88257bba5486

- 'EPMQ ELNO' 'EPMQ NOEU' 'SIEQ ELGA' 'SIEQ ELNO' 'SIEQ NOEU'
- # options of interpolation and extraction of internal variables

- \diamond VARI INTERNE = | 'VARC_ELGA'
- # options concerning properties calculation
- \diamond PROPRIETES = 'MATT ELGA' | 'MATT_ELEM'

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

Code Aster

Date : 22/05/2018 Page : 6/37 Clé : U4.81.04 Révision 88257bba5486

options for the nonlinear results (produced by STAT_NON_LINE or DYNA_NON_LINE) :

- ♦ RESULT = resu, / [evol_noli]
- # options of calculation of the constraints (elements of continuous medium 2D and 3D)

 \diamond Constraint =

DEFORMATION =

 \Diamond

- 'EFGE ELGA' 'EFGE ELNO' 'EFGE NOEU' 'SIEF ELNO' 'SIEF NOEU' 'SIGM ELGA' 'SIGM ELNO' 'SIGM NOEU' 'SIPO ELNO' 'SIPO NOEU' 'SIRO ELEM'
- # options of calculation of the deformations

'DEGE ELGA'
'DEGE ELNO'
'DEGE NOEU'
`EPFD ELGA'
'EPFD ELNO'
'EPFD NOEU'
`EPFP [_] ELGA'
'EPFP [_] ELNO'
`EPFP NOEU'
`EPME [_] ELGA'
'EPME ELNO'
`EPME NOEU'
`EPMG [_] ELGA'
'EPMG ⁻ ELNO'
'EPMG NOEU'
`EPSG ELGA'
'EPSG ELNO'
`EPSG NOEU'
`EPSI ELGA'
'EPSI ELNO'
'EPSI NOEU'
'EPSP ELGA'
'EPSP_ELNO'
'EPSP_NOEU'
'EPVC_ELGA'
'EPVC_ELNO'
'EPVC_NOEU'

options of calculation of energies

\$ ENERGY = | `DISS_ELEM'
| `DISS_ELGA'
| `DISS_ELNO'
| `DISS_NOEU'
| `ENEL_ELEM'
| `ENEL_ELEM'

Version 13

Code_Aster

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

 \diamond

Date : 22/05/2018 Page : 7/37 Clé : U4.81.04 Révision 88257bba5486

'ENEL_ELNO' 'ENEL_NOEU' 'ENTR_ELEM' 'ETOT_ELEM' 'ETOT_ELGA' 'ETOT_ELNO' 'ETOT_NOEU'

options of calculation of criteria

CRITERIA =		'DERA_ELGA'
		'DERA ELNO'
		'DERA_NOEU'
		'ENDO_ELGA'
		'ENDO_ELNO'
		'ENDO_NOEU'
		'EPEQ_ELGA'
		'EPEQ_ELNO'
		'EPEQ_NOEU'
		'EPMQ_ELGA'
		'EPMQ_ELNO'
		'EPMQ_NOEU'
		'INDL_ELGA'
		'PDIL_ELGA'
		`SIEQ_ELGA'
		'SIEQ_ELNO'
		`SIEQ_NOEU'

options of interpolation and extraction of internal variables

\$ VARI_INTERNE	=	 	<pre>'VAEX_ELGA' • NOM_VARI = (cf. [#2.4.3.]) 'VAEX_ELNO' • NOM_VARI = (cf. [#2.4.3.]) 'VAEX_NOEU' • NOM_VARI = (cf. [#2.4.3.])</pre>
		 	'VARC_ELGA' 'VARI_ELNO' 'VARI_NOEU'

- # options of calculation of hydraulic flows (elements THM)
- ♦ HYDRAULICS = | 'FLHN_ELGA'

options concerning properties calculation

◇ PROPRIETES = | 'MATT_ELGA'
| 'MATT_ELEM'

thermal options

Code Aster

)

Date : 22/05/2018 Page : 8/37 Titre : Opérateur CALC CHAMP Responsable : SELLENET Nicolas Clé : U4.81.04 Révision 88257bba5486 'SOUR ELGA' 'ETHE ELEM' # acoustic options RESULT = resu, [acou harmo] ٠ / / [mode acou] 'PRAC ELNO' \Diamond ACOUSTICS = 'PRAC_NOEU' 'PRME_ELNO' 'INTE_ELNO' 'INTE NOEU' # options for the generalized forces and nodal reactions RESULT = resu,٠ \Diamond FORCE = | 'FORC NODA' | 'REAC NODA' calculation of a field user # \Diamond CHAM UTIL = F (NOM CHAM = ncham, ٠ / CRITERION = | 'VMIS', ٠ 'INVA 2' | 'TRACE', FORMULA = / l_form, [formula] _____ = | `L2', NORMALIZES / 'FROBENIUS' NUME CHAM RESU = digital, [I] ٠), \Diamond TITLE = title, [l Kn] \Diamond INFORMATION = / 1, [DEFECT] / 2,

Date : 22/05/2018 Page : 9/37 Clé : U4.81.04 Révision 88257bba5486

2.1 Operands RESULTAT/MODELE/CHAM MATER/CARA ELEM/EXCIT

2.1.1 Operands RESULT

♦ RESULT = resu

Name of the structure of data result to enrich. This argument can be same as that used for the concept enriched by the operator, or a different name, which will create a new structure of data result.

NoticeS :

- In the majority of the situations, the structure of data resu contains all the necessary information with the calculation of the options: the model, the field of material, characteristics elementary, loadings. Keywords MODEL, CHAM_MATER, CARA_ELEM and EXCIT are thus useless;
- An exception notable relates to however the structures of dynamic data resulting from DYNA_VIBRA for which the user must ensure itself the coherence of the keywords between the operator of calculation and CALC_CHAMP. An alarm informs some.

2.1.2 Operands MODEL/CHAM_MATER/CARA_ELEM.

> MODEL = Mo

Name of the model on which the efforts are calculated, constraints, deformations, etc. It is optional because it can be extracted the result.

Output CHAM_MATER = chmater

Material field associated with the model M_{O} . This keyword is optional and must be provided only in exceptional cases (voluntary modification of material for example).

♦ CARA ELEM = carac

Elementary characteristics associated with the model Mo if it contains elements of structure or if the isoparametric elements are affected by a local reference mark of anisotropy. This keyword is optional because it can be extracted the result.

2.1.3 Keyword EXCIT

This keyword factor (optional) makes it possible to specify the thermal or mechanical loadings to use for the calculation of the options, instead of those which were useful in the structural analysis of data specified under the keyword RESULT.

The definition of this keyword is identical to that of the orders which built the structure of data <code>resu:</code> to see the orders <code>MECA_STATIQUE</code> [U4.51.01], <code>STAT_NON_LINE</code> [U4.51.03], <code>DYNA_VIBRATED</code> [U4.53.03].

2.2 Selection of the meshs concerned with calculation

Keywords ${\tt ALL}$ and ${\tt GROUP}_{MA}$ allow the user to choose the meshs on which it wishes to do his elementary calculations of postprocessing.

/ ALL = 'YES'

All the meshs (carrying finite elements) will be treated. It is the value by default.

/ GROUP_MA = l_grma

Only meshs included in l_grma will be treated.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 10/37 Clé : U4.81.04 Révision 88257bba5486

2.3 Selection of the sequence numbers

Use of the keywords <code>TOUT_ORDRE</code>, <code>NUM_ORDRE</code>, <code>INST</code>, <code>FREQ</code> is described in the document [U4.71.00].

2.4 Localization of the fields

In the continuation of the document one will not explicitly specify the localization of the fields. Indeed, the localization is given in the name of the field (and thus of the option):

- Field by element: *_ELEM
- Field at the points of Gauss per element: * ELGA
- Field with the nodes by element: * ELNO
- Field with the nodes: * NOEU

The fields, for the majority, are calculated natively at the points of Gauss (* ELGA).

Fields with the nodes by element (*_ELNO) are obtained by extrapolation starting from the field at the points of Gauss (detailed method in [R3.06.03]).

Fields with the nodes (*_NOEU) are obtained starting from the fields with the nodes by element by making a simple arithmetic mean (not balanced by the size of the meshs) of the values recorded on the elements in a given node.

Notice 1:

For the calculation of the equivalents, the fields with the nodes by element (*_ELNO) are not obtained by extrapolation starting from the field at the points of Gauss. Extrapolation is made on the stress field or of deformation then one calculates the field of equivalent.

Notice 2:

The averages with the nodes of computed fields in local reference marks are licit only if the angles between these reference marks are weak. In the contrary case, they do not have a direction.

Notice 3:

When the keyword *GROUP_MA* is informed for the calculation of an option *_*NOEU*, the arithmetic mean is made on the selected meshs. Thus this result is different from that obtained by doing a total calculation then restricted with the only selected meshs.

Example: One considers a structure of which the shear stress σ_{xy} is worth:

In total calculation, σ_{xy} is worthless on $M1 \cap M2$ like average of two opposite values. These values are far from being worthless, as calculation shows it on M1 only. The values on the border of the required field are thus to interpret with precaution.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 11/37 Clé : U4.81.04 Révision 88257bba5486

For the elements of structures which have under-points (multifibre plates, hulls, beams, pipes), fields of the type *_ELGA and *_ELNO are calculated on all the under-points. To obtain a field on only one under-point (a layer and a level for example), an extraction should be made *via* the operator POST_CHAMP (options EXTR_COQUE, EXTR_PMF and EXTR_TUYAU). Moreover this intermediate operation is essential to calculate a field of the type *_NOEU for these elements of structure: fields of the type * NOEU indeed never have under-point.

Finally the options of calculation of energy never produce fields under-point. Indeed for the elements of structure, the field is integrated in the thickness (integration made on the under-points).

2.5 Dependence of the fields

The calculation of a field can require the preliminary calculation of one or more other fields. Thus for example to calculate a field *_NOEU it is necessary to have the same field by element to the nodes * ELNO and at the points of Gauss * ELGA.

This dependence is solved by the operator CALC_CHAMP who carries out the calculation of the intermediate fields automatically. It is thus not necessary for the user to know the tree of dependence of the options.

Only the fields explicitly required by the user are saved in the structure of data result.

2.6 Operands for the mechanical options

2.6.1 Options of calculation of the constraints (Operand CONSTRAINT)

The components of the generalized effort and stress fields are detailed in the document [U2.01.05].

- 'EFGE_ELGA'
- 'EFGE_ELNO'
- 'EFGE_NOEU'

Calculation of the generalized efforts (elements of structure).

It acts is of an extraction of the efforts contained in the field <code>SIEF_ELGA/STRX_ELGA</code> (case of the elements of beams/pipes or discrete), that is to say of a calculation by integration of the constraints (case of the multifibre elements of beams or plates and hulls).

Notice 1:

LE field EFGE_ELNO is not always an extrapolation of the field EFGE_ELGA; in particular for a linear calculation where this field is calculated directly starting from displacement. This is why certain components are not calculated (put at zero) into non-linear.

Notice 2:

For the offset plates, the efforts are calculated in the "plan" of the grid. If one wishes these efforts in the average "plan" of the plate, the order should be used POST_CHAMP/COQUE_EXCENT.

- 'SIEF_ELGA'
- 'SIEF ELNO'
- 'SIEF NOEU'

Calculation of the state of stress (forced or efforts generalized according to modeling) starting from displacements (linear elasticity), to see [U2.01.05].

Note:

The field `SIEF_ELGA' is calculated natively by the non-linear operators of resolution. It is always present in a structure of data result of the type evol noli.

'SIGM ELGA'

. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code Aster Titre : Opérateur CALC CHAMP

Responsable : SELLENET Nicolas

I

Date : 22/05/2018 Page : 12/37 Clé : U4.81.04 Révision 88257bba5486

'SIGM ELNO' I

'SIGM NOEU'

Calculation of the state of stress.

It is actually about an extraction of the constraints contained in the field SIEF ELGA, to see [U2.01.05].

'SIPO ELNO'

'SIPO NOEU'

Calculation of the constraints in the section of beam broken up into contributions of each generalized effort.

List of the components of the field:

SN	Contribution of the normal effort N with σ_{xx} , $\sigma_{xx} = \frac{N}{A}$
SMFY	Contribution of the bending moment <i>MFY</i> with σ_{xx} , $\sigma_{xx} = z \frac{MFY}{I_y}$
SMFZ	Contribution of the bending moment <i>MFZ</i> with σ_{xx} , $\sigma_{xx} = -y \frac{MFZ}{I_z}$
SVY	Contribution of the shearing action VY with σ_{xy} , $\sigma_{xy} = \frac{VY a_Y}{A}$
	a_y coefficient of shearing in the direction y
SVZ	Contribution of the shearing action VZ with σ_{xz} , $\sigma_{xz} = \frac{VZ a_Z}{A}$
	a_Z coefficient of shearing in the direction z
SMT	Contribution of the torque MX with σ_{yz} , $\sigma_{yz} = \frac{MX R_T}{J_x}$

The constraints above are expressed in the local reference mark, i.e. the principal reference mark of inertia of the cross-section [R3.08.01].

Values of σ_{xx} had at the two bending moments are the maximum values of those calculated in Y_{min} , Y_{max} on the one hand, and in Z_{min} , Z_{max} in addition (except for a general section where it is the user who provides the localization of the extremum with the keyword RY, RZ and RT cf. AFFE CARA ELEM [U4.42.01]).

For a rectangular section:

- one calculates the value of SMFY in z = HZ/2, •
- one calculates the value of SMFZ in y = HY/2.

For a circular section, one calculates the values of SMFY and SMFZ for y and z being worth *R* .

'SIPM ELNO'

> Calculation of the constraints maximum and minimum in the section of beam starting from the generalized efforts (linear elasticity).

The same remark as for SIPO ELNO applies a general section in the case of.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 13/37 Clé : U4.81.04 Révision 88257bba5486

| 'SIRO_ELEM'

Calculation of the constraints projected on the skin of a volume (for example on the facings of a hydraulic work.

List of the components of the field:

$\begin{array}{ c c c c c c c c } \hline SIG_{NX} & SIG_{NY} & Components \ \sigma_{_X}, \ \sigma_{_Y}, \ \sigma_{_Z} \ \text{in the total reference mark of } \vec{\sigma}_{_n} \\ \hline SIG_{NZ} & Value \ SIG_{NZ} & \\ \hline SIG_{TX} & SIG_{TX} & \\ SIG_{TY} & Components \ \sigma_{_X}, \ \sigma_{_Y}, \ \sigma_{_Z} \ \text{in the total reference mark of } \vec{\sigma}_{_t} \\ \hline \end{array}$
SIG_NY SIG_NZComponents σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_n$ SIG_NZSIG_NZSIG_NValue SIG_N SIG_TX SIG_TYComponents σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_t$
SIG_NZ NZ SIG_N Value SIG_N SIG_TX SIG_TY Components σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_t$
SIG_NValue SIG_N SIG_TXSIG_TYSIG_TYComponents σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_t$
SIG_TX SIG_TY SIG_TY Components σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_t$
SIG_TY Components σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_t$
STC T7
519_12
SIG_T1X
SIG_T1Y Components σ_x , σ_y , σ_z in the total reference mark of $\vec{\sigma}_{tl}$
SIG_T1Z
SIG_T1 Eigenvalue SIG _{T1}
SIG_T2X
SIG_T2Y Components σ_X , σ_Y , σ_Z in the total reference mark of $\vec{\sigma}_{12}$
SIG_T2Z
SIG_T2 Eigenvalue SIG_{T2}

These fields are evaluated starting from a stress field calculated on the voluminal meshs (MODELISATION= '3D' or '3D_SI'):

- Identification of the voluminal meshs corresponding to the facets of the group of surface meshs. For each facet (surface mesh), one chooses the voluminal mesh located on the side "-" normal at the facet. If there is no voluminal mesh of with dimensions "-" facet, one does not calculate SIRO_ELEM on this facet;
- Recovery of the constraints 3D to assign them to the nodes faces;
- Average of each component of the tensor of the constraints in the center of the faces of elements;
- One places oneself in a reference mark composed by the normal vector \vec{n} with the facet and the plan of the facet. A noted tensor is obtained $[\sigma]$.
- One evaluates $[\sigma]\vec{n} = \vec{\sigma}_n + \vec{\sigma}_t$, $\vec{\sigma}_n$ being a vector colinéaire with $\vec{n} \cdot \vec{\sigma}_t$ is then a vector representing the shearing which is negligible in the case of the faces upstream/downstream of a stopping. One notes $\vec{\sigma}_n = SIG_N\vec{n}$ and SIG_N indicate the presence of traction if it is positive and of compression if it is negative.
- One thus places oneself on the assumption of a negligible shearing $\begin{bmatrix} \pi & 0 \end{bmatrix}$

 $\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} \sigma_{2D} & 0 \\ 0 & SIG_N \end{bmatrix}$ One seeks the vectors of principal constraints corresponding to

 σ_{2D} : the vectors are thus obtained $\vec{\sigma}_{tl}$ and $\vec{\sigma}_{t2}$ who are in the plan of the facet and the eigenvalues SIG_{Tl} and SIG_{T2}

Notice 1:

In the case of facets plunged in volume, the user has the possibility thanks to the order MODI_MAILLAGE/ORIE_PEAU_3D/GROUP_MA_VOLU to reorientate this normal as it wishes it. It can thus choose the voluminal mesh which will be used for calculation.

So side "-", one finds a mesh of "joint" (which is voluminal), the calculation of SIRO_ELEM is impossible because the constraints stored in the elements of joint do not allow calculation detailed above.

Notice 2:

If one informs TOUT=' OUI', the list of the meshs is filtered to keep only the meshs of skin.

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 14/37 Clé : U4.81.04 Révision 88257bba5486

2.6.2 Options of calculation of the deformations (Operand DEFORMATION)

The components of the fields of deformation are detailed in the document [U2.01.05].

| 'DEGE_ELGA'

Calculation of the deformations generalized starting from displacements. This option has direction only for the elements of structure of plate and pipe, not for the beams The generalized deformations are obtained in the local reference mark of the element.

- | 'DEGE ELNO'
- | 'DEGE NOEU'

Calculation of the deformations generalized starting from displacements. This option has direction only for the elements of structure of beam, plate and pipe. The generalized deformations are obtained in the local reference mark of the element.

```
| 'EPFD ELGA'
```

'EPFD ELNO'

```
| 'EPFD NOEU'
```

Calculation of the deformations of creep of desiccation, for the models <code>BETON_UMLV_FP</code> and <code>BETON BURGER FP</code>.

| `EPFP ELGA'

- 'EPFP_ELNO'
- | 'EPFP NOEU'

Calculation of the deformations of clean creep associated with the model GRANGER_FP, with the model BETON UMLV FP or with the model BETON BURGER FP.

```
| 'EPME ELGA'
```

- 'EPME ELNO'
- | 'EPME NOEU'

Calculation of the "mechanical" deformations starting from displacements. This calculation is done in theory of " **small displacements** ". The calculated deformations are equal to the total deflections minus the thermal deformations. The deformations of drying and hydration are also withdrawn as well as the deformations of pressure of fluid and the deformations unelastic. On the other hand the deformations of creep are not withdrawn.

$$\varepsilon_{ij}^{m}(u) = \frac{1}{2} (u_{i,j} + u_{j,i}) - \varepsilon^{th}$$

- | 'EPMG ELGA'
- | 'EPMG ELNO'
- · 'EPMG NOEU'

Calculation of the "mechanical" deformations starting from displacements. This calculation is done in theory of " **large displacements** ". The calculated deformations are equal to the total deflections minus the thermal deformations.

$$E_{ij}^{m}(u) = \frac{1}{2} \left(u_{i,j} + u_{j,i} + u_{k,i} u_{k,j} \right) - \varepsilon^{th}$$

- | 'EPSG ELGA'
- | 'EPSG ELNO'
- | 'EPSG NOEU'

Calculation of the deformations of Green-Lagrange.

$$E_{ij}(u) = \frac{1}{2} \left(u_{i,j} + u_{j,i} + u_{k,i} u_{k,j} \right)$$

| 'EPSI ELGA'

. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 15/37 Clé : U4.81.04 Révision 88257bba5486

| 'EPSI_ELNO' | 'EPSI NOEU'

Calculation of the deformations starting from displacements.

$$\varepsilon_{ij}(u) = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

For the elements of structure, these deformations are obtained in the local reference mark of the element.

- 'EPSP_ELGA'
- 'EPSP_ELNO'

'EPSP_NOEU'

Calculation of the unelastic deformations starting from the field of displacement u, constraints σ , temperature T, possible unelastic deformations ϵ^a , and of the internal variables,

$$\varepsilon^{p} = \varepsilon(u) - A^{-1} \sigma - \varepsilon^{th}(T) - \varepsilon^{a} - \varepsilon^{fl}$$

where ϵ^{fl} is the clean deformation of creep of Granger.

- 'EPVC_ELGA'
- 'EPVC_ELNO'
- 'EPVC_NOEU'

Calculation of the deformations related to the variables of order. For the moment only the following components are defined:

- thermal deformations: EPTHER_L, EPTHER_T, EPTHER_N such as: $\epsilon_i^{th} = \alpha_i (T - T_{ref}); i \in \{L, T, N\}$ (if the material is isotropic, the 3 components are equal), *T* being the temperature and α_i the thermal dilation coefficient;
- withdrawal of drying EPSECH (used for the laws describing the behavior of the concrete) $\epsilon^{sech} = -K_{dessic}(S_{ref} S)$, S being the variable of order drying and K_{dessic} the coefficient of withdrawal of desiccation;
- withdrawal of hydration EPHYDR (used for the laws describing the behavior of the concrete) $\epsilon^{hydr} = -B_{endog}h$, h being the variable of order hydration, and B_{endog} being the endogenous coefficient of withdrawal.
- Deformation related to the pressure of fluid (for thermo-hydro-mechanics with a resolution by chaining): EPPTOT such as: $\epsilon^{ptot} = \frac{b}{3K} p_{tot}$, p_{tot} is the variable of order total pressure of fluid, b is the coefficient of Biot, K is the modulus of elasticity.

2.6.3 Options of extraction of the internal variables (Operand VARI_INTERNE)

- VAEX ELGA'
- 'VAEX ELNO'
- 'VAEX NOEU'

Extraction of internal variables in THM only.

The goal of this option is to be able post-to treat the internal variables in THM in a more convivial way. The principle of these fields is to extract from the field <code>VARI_ELGA</code> (or <code>VARI_ELNO</code>) (one and only one) the variable intern who interests us via a keyword without having to know his name in the field <code>VARI</code> *.

List of the possible components of the field (the field has only one component, that chosen by the user via NOM VARI):

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 16/37 Clé : U4.81.04 Révision 88257bba5486

DPORO	Variation of the porosity of material
DRHOLQ	Variation of the density of material
DPVP	Variation of the steam pressure
SATLIQ	Saturation of the liquid
EVP	Cumulated voluminal plastic deformation
IND_ETA	Mechanical indicator of state
D	Value of the damage
IND_END	Indicator of damage
TEMP_MAX	Maximum temperature
GAMP	Plastic deformation déviatoire cumulated
PCR	Critical pressure
SEUIL_HYD	Hydrous threshold
IND_HYD	Hydrous indicator of irreversibility
PCOHE	Pressure of cohesion
COMP_ROC	Behavior of the rock
SEUIL_ISO	Isotropic threshold
ANG_DEV	Angle of the threshold déviatoire
X11	Components of the kinematic tensor of work hardening
X22	Components of the kinematic tensor of work hardening
X33	Components of the kinematic tensor of work hardening
X12	Components of the kinematic tensor of work hardening
X13	Components of the kinematic tensor of work hardening
X23	Components of the kinematic tensor of work hardening
DIST_DEV	Distance standardized with the threshold déviatoire
DEV SUR CRIT	Relationship between the threshold déviatoire and the critical threshold
	deviatoric
DIST_ISO	Distance standardized with the isotropic threshold
NB_ITER	Iteration count internal
STOP	Value of the local test of stop of the iterative process
NB_REDE	Number of local recutting of the step of time
SIGN	Sign of the contracted product of the deviatoric constraint by the deviatoric
0 1 0 1 1	plastic deformation

NOM_VARI = / nom_vari,

[TXM]

Name of the internal variable.

Notice 1:

When the variable to be extracted is not part of the internal variables of the laws concerned, an alarm is emitted but the field is affected all the same with *R8VIDE* () (number very large reality about 1.0*E*+308).

Notice 2:

The field VAEX_NOEU is calculated from VAEX_ELNO and not by extraction of the field VARI NOEU.

| 'VARC ELGA'

Calculation of the variables of orders having been used for a mechanical calculation.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

Date : 22/05/2018	Page : 17/37
Clé : U4.81.04	Révision
	88257bba5486

List of the components of the field:

TEMP	
HYDR	
SECH	
CORR	Of desumantation of the order ADDE MADDIAN [14 42 02] for the definition of each
IRRA	ci documentation of the order AFFE_MATERIAU [04.45.05] for the definition of each
PTOT	component.
DIVU	
NEUT1	
NEUT2	

Note:

All the components are systematically calculated. The variables which were not defined are initialized with the value *R8VIDE* () (Nombre real very large about 1.0E+308).

'VARI_ELNO'

'VARI_NOEU'

Calculation of the internal variables.

List of the components of the field:

V1	Variable interns 1
VI	Variable interns I
Vn	Internal variable N

The number and the type of these internal variables are specific to each model of behavior (*cf.* [U4.51.11]).

Note:

The field `VARI_ELGA' is calculated natively by the non-linear operators of resolution. It is always present in a SD result of the type evol noli.

2.6.4 Options of calculation of energy (Operand ENERGY)

'DISS ELEM'

Calculation of the energy dissipated by the damage. The field obtained has only one component of name `ENDO'.

List of the components of the field:

ENDO Energy dissipated by the damage

Note:

Valid only for the elements DKTG and the law GLRC_DM. Its expression is given in [R7.01.32].

- 'DISS ELGA'
- 'DISS ELNO'
- 'DISS NOEU'

Calculation of the density of energy dissipated by the damage. The field obtained has only one component of name `ENDO'.

List of the components of the field:

ENDO Energy dissipated by the damage

. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 18/37 Clé : U4.81.04 Révision 88257bba5486

Note:

Valid only for the elements DKTG and the law GLRC_DM. Its expression is given in [R7.01.32].

| 'ECIN ELEM'

Calculation of the kinetic energy.

$$E_c = \frac{1}{2}mv^2$$

List of the components of the field:

TOTAL	Kinetic energy		
Additional components for the plates and hulls:			
MEMBRANE			
INFLECTIO	Contributions to the kinetic energy (cf [R3.07.03])		
Ν			
Additional co	mponents for the curved beams:		
PLAN_XY	Contributions to the kinetic operaty (of IP2 08 01)		
PLAN_XZ	Contributions to the kinetic energy (cf [K3.06.01])		
Additional components for the discrete ones:			
DX			
DY			
DZ			
DRX	Contributions to the kinetic energy		
DRY			
MARTINI			
DRZ			

| 'ENEL ELEM'

Calculation of elastic energy.

$$E_p = \frac{1}{2} \sigma A^{-1} \sigma$$

List of the components of the field:

TOTAL	Elastic energy	
Additional components for the plates and hulls:		
Contributions to elastic energy (cf [R3.07.03])		
MEMBRANE	Fleetie energy out of membrane	
INFLECTIO	Elastic energy out of memorane	
N	Elastic energy in inflection	
SHEAR	Elastic energy in shearing	
COUPL_MF	Elastic energy of coupling membrane-inflection	

Note:

Into non-linear (*STAT_NON_LINE, DYNA_NON_LINE,...*) components SHEAR and COUPL_MF are worthless.

```
'ENEL_ELGA'
```

```
'ENEL_ELNO'
```

```
| 'ENEL_NOEU'
```

Calculation of the density of energy elastic.

Version 13

Code_Aster

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 19/37 Clé : U4.81.04 Révision 88257bba5486

List of the components of the field:

TOTAL	Elastic energy	
Additional co	Additional components for the plates and hulls:	
Contributions	to elastic energy (cf [R3.07.03])	
MEMBRANE	Electic energy out of membrane	
INFLECTIO	Elastic energy out of memorane	
Ν	Elastic energy in inflection	
SHEAR	Elastic energy in snearing	
COUPL MF	Elastic energy of coupling membrane-inflection	

Note:

Into non-linear (STAT_NON_LINE, DYNA_NON_LINE,...) components SHEAR and COUPL_MF are worthless.

'ENTR ELEM'

Calculation of the modified elastic energy of traction. In breaking process, it may be that one is need to consider an energy elastic known as of traction, thus the idea consists in calculating one modified elastic energy, allowing to destroy the participation of spherical compression and compression according to each clean directions of deformation. Thus elastic energy becomes:

$$E_{el}^{traction} = \frac{\lambda}{2} H(tr(\epsilon)) tr(\epsilon)^2 + \mu \sum_{i=1}^{3} H(\epsilon_i) \epsilon_i^2$$

where H represent the Heaviside function,

- ϵ represent the tensor of the elastic strain,
- ϵ_i represent the principal elastic strain.

List of the components of the field:

TOTAL	Elastic energy modified traction	
-------	----------------------------------	--

Note:

For the moment, only valid in small deformations (DEFORMATION = SMALL or DEFORMATION = PETIT REAC).

| 'EPOT ELEM '

Calculation of the potential energy of deformation, starting from the field of displacement u and of the fields of temperature T:

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

List of the components of the field:

TOTAL	Potential energy	
Additional components for the plates and hulls:		
MEMBRANE		
INFLECTIO	Contributions to the potential energy (cf [R3.07.03])	
N		
Additional co	mponents for the right beams:	
TRAC_COM		
TORSION	Contributions to the potential energy (cf IR3 08 01)	
FLEX_Y	Contributions to the potential energy (or [No.00.01])	
FLEX_Z		
Additional co	mponents for the curved beams:	
PLAN_XY	Contributions to the potential energy (cf IR3 08 01)	
PLAN_XZ		
Additional co	mponents for the discrete ones:	
DX		
DY		
DZ		
DRX	Contributions to the potential energy	
DRY		
MARTINI		
DRZ		

• for the elements of continuous mediums 2D and 3D:

$$E_{pot} = \frac{1}{2} \int_{element} \varepsilon(U) \cdot \mathbf{A} \cdot \varepsilon(U) dv - \int_{element} \varepsilon(U) \cdot \mathbf{A} \cdot \varepsilon^{th}(U) dv + \frac{1}{2} \int_{element} \varepsilon^{th}(U) \cdot \mathbf{A} \cdot \varepsilon^{th}(U) dv$$

• for the elements of beams:

$$E_{pot} = \frac{1}{2} u^{T} \mathbf{K}_{e} \cdot u - u^{T} \mathbf{B}^{T} \cdot \mathbf{A} \cdot \mathbf{\varepsilon}^{th} + \frac{1}{2} \mathbf{\varepsilon}^{th} \mathbf{A} \cdot \mathbf{\varepsilon}^{th}$$

• for the elements of plates and hulls:

$$E_{pot} = \frac{1}{2} u^T \cdot \mathbf{K}_e \cdot u - u^T \cdot \mathbf{B}^T \cdot \mathbf{A} \cdot \mathbf{\epsilon}^{th}$$

| 'ETOT ELEM '

Calculation of the increment of total deformation energy enters the moment running and the previous moment.

List of the components of the field:

TOTAL	Increment of total deformation energy	
-------	---------------------------------------	--

```
| 'ETOT ELGA'
```

| 'ETOT_ELNO'

| 'ETOT _NOEU'

Calculation of the increment of density of total deformation energy enters the moment running and the previous moment.

List of the components of the field:

TOTAL Increment of total deformation energy

2.6.5 Options of calculation of criteria (Operand CRITERIA)

'DERA ELGA'

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Code Aster

Titre : Opérateur CALC CHAMP Responsable : SELLENET Nicolas

- 'DERA ELNO' I
 - 'DERA NOEU'

Calculation of the local indicator of discharge and indicator of loss of radiality [R4.20.01].

List of the components of the field:

DCHA_V	Indicator of discharge calculated on the deviative tensor of the constraints
DCHA_T	Indicator of discharge calculated on the total tensor of the constraints
IND_DCHA	Indicator allowing to know if the discharge would remain elastic or if there would
	be a risk of plasticization if a pure kinematic work hardening were used
VAL_DCHA	In the case of indicate the proportion of exit of the criterion abusive discharge
X11	Components of the kinematic tensor used for the calculation of IND_DCHA
X22	
X33	
X12	
X13	
X23	
RADI_V	Indicator of the variation of the direction of the constraints between the moments
	t and $t + \Delta t$
FPP PADT	Error η had with the discretization in time, directly connected to the rotation of
LEVE KADI	the normal on the surface of load

DCHA V and DCHA T express, in the two cases, the relative variation of the standard of the constraints within the meaning of Von Misès: $I_1 = \frac{\|\mathbf{\sigma}(M, t + \Delta t)\| - \|\mathbf{\sigma}(M, t)\|}{\|\mathbf{\sigma}(M, t + \Delta t)\|}$, the standard being function of the behavior (isotropic work hardening or linear kinematics)

IND DCHA can take the following values:

- 0 : unconstrained initial value; .
- 1 : if elastic load;
- 2 : if plastic load;
- -1 : if licit elastic discharge (whatever the type of work hardening);
- -2 : if abusive discharge (one would have plasticized with a kinematic work hardening).

RADI V is given by the following relation:

$$I_2 = 1 - \frac{|\boldsymbol{\sigma}(\boldsymbol{M}, t).\Delta \boldsymbol{\sigma}|}{\|\boldsymbol{\sigma}(\boldsymbol{M}, t)\| \|\Delta \boldsymbol{\sigma}\|}$$

This quantity is worthless when the radiality is preserved during the increment of time.

ERR RADI is the angle enters n^- , the normal with the criterion of plasticity at the beginning of the step of time (urgent t^{-}), and n^{+} , the normal with the criterion of plasticity calculated at the end of the step of time (urgent t^+) in the following way:

$$\eta = \frac{1}{2} \left\| \Delta \boldsymbol{n} \right\| = \frac{1}{2} \left\| \boldsymbol{n}^{+} - \boldsymbol{n}^{-} \right\| = \left| \sin \left(\frac{\alpha}{2} \right) \right|$$

That provides a measurement of the error (also used to refine the step of time [U4.51.11]. This criterion is operational for the elastoplastic behaviors of Von Mises with work hardening isotropic, kinematic linear and mixed: VMIS_ISOT_LINE , VMIS_ISOT_TRAC , VMIS ISOT PUIS, VMIS CINE LINE, VMIS ECMI LINE, VMIS ECMI TRAC, and for the behaviors élasto-visco-plastics of Chaboche: VMIS CIN1 CHAB, VMIS CIN2 CHAB, VMIS CIN2 MEMO, VISC CIN1 CHAB, VISC CIN2 CHAB, VISC CIN2 MEMO.

Note:

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 22/37 Clé : U4.81.04 Révision 88257bba5486

The calculation of these options requires to compare the stress fields with the moments t_i and t_{i+1} . The result is arranged with the sequence number associated with the moment t_i .

The indicator of discharge is calculated by: ID =

$$\frac{\|\boldsymbol{\sigma}_{i+1}\| - \|\boldsymbol{\sigma}_{i}\|}{\|\boldsymbol{\sigma}_{i+1}\|}$$

By default, calculation is done for the sequence numbers 1 with n-1. But if one specifies the list of moment (with "holes" possibly), calculation will relate to only the required moments but it will always compare the moment t_i with the moment t_{i+1} in the list of the moments having been used to do the non-linear calculation.

'ENDO ELGA'

'ENDO ELNO'

'ENDO NOEU'

Calculation of the damage d starting from the tensor of the constraints and cumulated plastic deformation p.

List of the components of the field:

TRIAX	Rate of triaxiality	
SI_ENDO	Equivalent constraint of damage of Lemaître-Sermage	
COENDO	DENDO Constraint of damage of Lemaître-Sermage standardized	
DOM_LEM	Damage of Lemaître-Sermage	

The rate of triaxiality α is given by the following relation:

$$\alpha = \frac{\sigma_h}{\sigma_{eq}}$$

and the equivalent constraint of damage σ^* :

$$\sigma^* = \sigma_{eq} \sqrt{\frac{2}{3}(1+\nu) + 3(1-2\nu)\alpha^2}$$

$$\mathbf{s} = \mathbf{\sigma} - \frac{1}{3} tr(\mathbf{\sigma}) \cdot \mathbf{Id}$$
$$\mathbf{\sigma}_{eq} = \sqrt{\frac{3}{2} \mathbf{s} \cdot \mathbf{s}}$$

with: $\sigma_{_{eq}}$

$$\sigma_h = \frac{1}{3}tr(\boldsymbol{\sigma})$$

The kinetics of damage is given by the law of Lemaître-Sermage:

$$\dot{d} = \left[\frac{Y}{S}\right]^s \dot{p}$$
 if $p \ge p_{seuil}$ with $Y = \frac{\sigma^{*2}}{2E(1-D)^2}$

where S and s are coefficients characteristic of material and p_{seuil} the threshold of damage related to the energy stored in material (if s=1 one obtains the classical law of Lemaître).

'EPEQ_ELGA' 'EPEQ_ELNO' 'EPEQ_NOEU' 'EPMQ_ELGA' 'EPMQ_ELNO' 'EPMQ_NOEU'

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 23/37 Clé : U4.81.04 Révision 88257bba5486

`EPGQ_ELGA' `EPGQ_ELNO' `EPGQ_NOEU'

Calculation of the equivalent deformations:

Fields $EPEQ_*$ are calculated starting from the fields $EPSI_*$ (deformations in small displacement), fields $EPGQ_*$ are calculated starting from the fields $EPSG_*$ (deformations of Green-Lagrange) and fields $EPMQ_*$ are calculated starting from the fields $EPME_*$ (mechanical deformations).

List of the components of the field:

INVA_2	Equivalent deformation of Von Mises
PRIN_1	
PRIN_2	Principal deformations, lines in the ascending order
PRIN_3	
INVA_2SG	Equivalent deformation of Von Mises signed by the trace of ϵ
VECT_1_X	
VECT_1_Y	
VECT 1 Z	
vect_2_x	
VECT 2 Y	Principal directions
VECT 2 Z	
VECT 3 X	
VECT 3 Y	
vect_3_z	

The equivalent deformation of Von Mises is given by the following expression:

INVA_2=
$$\sqrt{\frac{2}{3}dev(\mathbf{\epsilon})_{ij}dev(\mathbf{\epsilon})_{ji}}$$
 with $dev(\mathbf{\epsilon})_{ij} = \epsilon_{ij} - \frac{1}{3}tr(\mathbf{\epsilon})\delta_{ij}$

Note:

It is noted that the equivalent deformations obtained from *EPSI_** and *EPME_** are identical. Indeed, the difference between the two tensors is a spherical tensor (thermal deformation). Like equivalent deformation is obtained starting from the second invariant of the diverter, the spherical tensor " disappears " when the diverter is taken.

| 'INDL_ELGA'

Calculation of the indicator of localization, based on the acoustic tensor (criterion of RICE).

List of the components of the field:

Indicator of localization

- INDEX 0 if det(N.H.N) > 0
 - 1 if not, which corresponds has the initiation of the localization
- DIR1 First normal at the zone of localization
- DIR2 Second normal at the zone of localization
- DIR3 Third normal at the zone of localization
- DIR4 Fourth normal at the zone of localization

This indicator defines a state from which the local problem of integration of the behavior loses its character of unicity. It is defined by: $det(N, \mathbf{H}, N) \leq 0$, where \mathbf{H} appoint the tangent operator and N the normal with the directions of localization.

Note:

The method is developed only in the case 2D and for the laws of behavior of the type DRUCK PRAGER and HUJEUX.

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 24/37 Clé : U4.81.04 Révision 88257bba5486

| 'PDIL_ELGA'

Calculation of the module of rigidity of microphone-dilation.

List of the components of the field:

A1_LC2 Module of rigidity of microphone-dilation

The option PDIL_ELGA provides within the framework of the mediums of second gradient of dilation the value of the module A1_LC2, allowing to control the periodicity of the noncommonplace solution of the initially homogeneous problem [R5.04.03].

The calculation of <code>A1_LC2</code> is obtained via the evaluation of a function depending on the geometrical orientation of the material band considered. The angular discretization currently imposed is equal to 0.1° .

Note:

The method is developed only for the laws of behavior of the type DRUCK_PRAGER and HUJEUX.

SIEQ ELGA'

| 'SIEQ ELNO'

SIEQ NOEU'

Calculate calculated constraints equivalent starting from the stress fields.

VMIS	Equivalent constraint of Von Mises
TRESCA	Constraint of Tresca
PRIN_1	
PRIN_2	Principal constraints, lines in the ascending order
PRIN_3	
VMIS_SG	Equivalent constraint of Von Mises signed by the trace of σ
VECT_1_X	
VECT_1_Y	
VECT_1_Z	
VECT_2_X	
VECT_2_Y	Principal directions
VECT_2_Z	
VECT_3_X	
VECT_3_Y	
VECT_3_Z	
TRSIG	Trace of σ
TRIAX	Rate of triaxiality

List of the components of the field:

The equivalent constraint of Von Mises is given by the following expression:

VMIS =
$$\sqrt{\frac{3}{2}s_{ij}s_{ji}}$$
 with $s_{ij} = \sigma_{ij} - \frac{1}{3}tr(\sigma)\delta_{ij}$

The rate of triaxiality is given by the following expression:

$$TRIAX = \frac{TRSIG}{3 \times VMIS}$$

2.6.6 Option of calculation of hydraulic flows (Operand HYDRAULICS)

'FLHN_ELGA'

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 25/37 Clé : U4.81.04 Révision 88257bba5486

Calculation of hydraulic flows in THM $\Phi_{ij} = M_{ij} \cdot v$ on the elements of edge (2D or 3D) starting from the vector flow with the nodes.

 M_{ii} is the hydraulic vector flow of the component ij.

List of the components of the field:

FH11	
FH22	
FH12	
FH21	

2.6.7 OptionS dependent on the parameters of calculation (Operand PROPRIETES)

MATT	ELGA'
------	-------

'MATT ELEM'

Recovery of the values of the elastic parameters materials ${\tt E}$, <code>NAKED</code> and <code>RHO</code> with taking into account of the dependence to the variables of order and the moment of calculation.

For the field MATE_ELGA, one calculates the values at each point of Gauss, for the field MATE ELEM, one calculates the values with the barycentre of the element (family FPG1).

For the field MATE_ELGA and elements of absorbing border (3D_ABSO, D_PLAN_ABSO) the space coordinates taken into account are those of the barycentre of the element (as in the other options of calculation). The values at each point of Gauss are thus always equal between them and also with the values of the field MATE_ELEM.

2.7 Operands for the thermal options

2.7.1 **Operand THERMICS**

- 'FLUX_ELGA'
- 'FLUX_ELNO'
- 'FLOW_NOEU'

Calculation of the heat flows starting from the temperature.

List of the components of the field:

FLOW	
FLUY	Heat flow in the three directions of space (in the average layer for the hulls)
FLUZ	
Additional co	mponents for the hulls:
FLUX INF	
FLUY_INF	Heat flow in the three directions of space in lower skin
FLUZ_INF	
FLUX_INF	
FLUY_INF	Heat flow in the three directions of space in higher skin
FLUZ INF	

'HYDR NOEU'

Calculation of the hydration.

List of the components of the field:

HYDR Hydration

Note:

The field `HYDR_ELNO' is calculated natively by the non-linear operator of thermics THER NON LINE for the modeling of the concrete [R7.01.12].

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 26/37 Clé : U4.81.04 Révision 88257bba5486

| 'PENNYR ELGA'

Calculation of a source of heat.

List of the components of the field:

SOUR Source of heat

This source is calculated starting from an electric potential via the law of Ohm. This electric potential must be calculated by the operator <code>THER_LINEAIRE</code> [U4.54.01] by making the analogies necessary. This source can be then used in a thermal calculation via the keyword <code>SOUR CALCULEE</code> order <code>AFFE CHAR THER</code> [U4.44.02].

| 'ETHE ELEM'

Calculation of thermal energy to balance starting from the field of temperature T.

List of the components of the field:

TOTAL Thermal energy

2.8 Operands for the acoustic options

2.8.1 Operand ACOUSTICS

- | 'INTE ELNO'
- | 'INTE NOEU'

Calculation of the acoustic intensity. The definitions are in [R4.02.01].

List of the components of the field:

INTX_R	Acoustic intensity, real part according to axis X
INTY_R	Acoustic intensity, real part according to the axis there
INTZ_R	Acoustic intensity, real part according to axis Z
INTX_I	Acoustic intensity, imaginary part according to axis X
INTY_I	Acoustic intensity, imaginary part according to the axis there
INTZ_I	Acoustic intensity, imaginary part according to axis Z

'PRAC ELNO'

'PRAC NOEU'

Calculation of the pressure to the nodes partly real, imaginary part and decibels.

List of the components of the field:

PRES_I	Acoustic pressure, real part
PRES_R	Acoustic pressure, imaginary part
DB	Acoustic pressure in decibel

| 'PRME ELNO'

Calculation of the pressure to the nodes for the elements FLUID.

List of the components of the field:

	DB	Acoustic pressure in decibel
--	----	------------------------------

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 27/37 Clé : U4.81.04 Révision 88257bba5486

2.9 Operand for the nodal forces and reactions

2.9.1 Operand FORCE

'FORC_NODA'

Calculation of the nodal forces generalized starting from the constraints at the points of Gauss.

List of the components of the field:

DX				
DY	Nodal forces			
DZ				
Additional components for the elements of structure:				
DRX				
DRY	Nodal forces (moments)			
MARTINI				
DRZ				

The nodal forces correspond to the direction finite elements with the interior forces taking part in the equilibrium equations. The calculation of the generalized nodal forces \mathbf{F}_{K} is done in the following way:

$$\sum_{K} \mathbf{F}_{K} \cdot \mathbf{v}_{K} = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}(\mathbf{v}_{K}) d \Omega = \sum_{K} \int_{K} \boldsymbol{\sigma}^{K} \cdot \boldsymbol{\varepsilon}(\mathbf{v}_{K}) dK = \sum_{K} \int_{K} \boldsymbol{\sigma}^{K} \cdot \mathbf{B} \cdot \mathbf{v}_{K} dK$$

with σ^{K} constraints at the points of Gauss of the element K;

B the operator finite elements of generalized deformations (matrix connecting the deformations of the 1^{er} order with generalized displacements);

 \mathbf{v}_{K} generalized unit elementary displacement.

From where:

 $\mathbf{F}_{K} = \left\{ \int_{K}^{t} \mathbf{B} \cdot \boldsymbol{\sigma}^{K} dK \right\} \quad .$

The dimension of the nodal forces is dual of that of v_{κ} to give a work (in Joules).

For the elements of beam and the elements discrete, the constraints at the points of Gauss are in fact the nodal efforts generalized in the reference mark of the element (obtained by the product of the matrix of rigidity of the element by displacement and by taking account of the efforts of thermal origin and the efforts distributed). The calculation of the nodal forces is done by projecting the nodal efforts contained in the field of reference symbol `SIEF_ELGA' in the total reference mark. The summation above on the elements applies then. Components DX, DY and DZ the forces give and DRX, DRY MARTINI and DRZ moments.

For the axisymmetric elements, integration in θ is done on a sector of 1 radian. If one wants the integral of the surface effort on all the disc it is thus necessary to multiply by 2π .

For the elements in plane deformation, is calculated on a tape of width unit. The calculated nodal forces are thus by way of forces per unit of length. If one wants to calculate the nodal forces being exerted on a structure of width l, it is necessary to multiply the result in D_PLAN by l, with this close the assumption of plane deformation is not valid close to the two faces. There will be thus an approximate result.

For the solid elements (3D, 2D and bars), them FORC_NODA in general have the dimension of a force. It is about a field on the nodes of the grid where the value in a node is obtained starting from the constraints calculated on the convergent elements with this node, thus their values thus vary when the grid changes. In the absence of loading distributed, balance

. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

ode Aster

Date : 22/05/2018 Page : 28/37 Clé : U4.81.04 Révision 88257bba5486

imposes their nullity in an interior node, while they correspond to the reaction on the supports where a kinematic relation is imposed (case of an imposed displacement).

In the case as of hulls, the components DX, DY and DZ they give FORC_NODA (of dimension of a force) in the total reference mark of the grid. These components are built with the normal efforts and cutting-edges in the hull. Components DRX, DRY MARTINI and DRZ they give FORC_NODA (of one moment dimension) in the total reference mark of the grid, built with the bending moments in the hull. In the case of behaviors homogenized of standard hull ELAS_COQUE, it is preferable to look at EFGE_NOEU.

In (thermo) hydro-mechanical, cf § 8, [R7.01.10], the generalized nodal forces associated

with each component correspond to the mechanical forces and flows. If one notes $\mathbf{Q}^T \boldsymbol{\sigma}_0$ the result of FORC_NODA, for the hydraulic equations, then for a step of time Δt , one a:

$$\int_{\Omega} \mathbf{Q}^{T} \boldsymbol{\sigma}_{0} \cdot \boldsymbol{p}^{*} d \,\Omega = -\Delta t \int_{\Omega} \mathbf{M}^{-} \cdot \nabla \boldsymbol{p}^{*} d \,\Omega$$

Note:

To note that flows are taken at the moment t^- because of θ - diagram employed, cf [R7.01.10].

In FORC NODA:

- with the degree of freedom PRE1 in saturated for example is associated water flow $-\Delta t \int_{\Omega} (\mathbf{M}_{vp} + \mathbf{M}_{w})^{-} \nabla p^{*} d \Omega$
- with the degree of freedom PRE2 in unsaturated flow with the gas component is associated $-\Delta t \int_{\Omega} (\mathbf{M}_{ad} + \mathbf{M}_{as})^{-} \cdot \nabla p^{*} d\Omega$

• with the degree of freedom TEMP the heat flux is associated $-\Delta t \int_{\Omega} \mathbf{q} \cdot \nabla T^* d \Omega$

with **q** heat flux and \mathbf{M}_{w} , \mathbf{M}_{vp} , \mathbf{M}_{as} and \mathbf{M}_{ad} hydraulic flows of liquid water, the vapor, the air (or all other composing) dry and of the air dissolved in the liquid. These data correspond respectively to the constraints generalized of *Code_Aster* M_{1}^{1} , M_{2}^{2} , M_{2}^{1} , M_{2}^{2} , cf § 2.2, [R7.01.10].

| 'REAC NODA'

Calculation of the nodal forces of reactions generalized with the nodes, the constraints at the points of Gauss and of the loadings.

List of the components of the field:

DX				
DY	Nodal reactions			
DZ				
Additional components for the elements of structure:				
DRX				
DRY	Nedel reactions (momente)			
MARTINI	Noual reactions (moments)			
DRZ				

The generalized nodal reactions correspond to the direction finite elements with the forces exerted on the supports (boundary conditions) taking part in the equilibrium equations.

In statics, for the concepts result of the type $evol_elas$, $mult_elas$, fourier_elas or evol noli, the calculation of the generalized nodal reactions \mathbf{R}_{κ} is done by:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

[.] Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 29/37 Clé : U4.81.04 Révision 88257bba5486

$$\sum_{K} \mathbf{R}_{K} \cdot \mathbf{v}_{K} = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}(\mathbf{v}_{K}) d \,\Omega - \mathbf{L}(\mathbf{v}_{K})$$

with \mathbf{v}_{K} generalized unit elementary displacement,

$$\mathbf{L}(\mathbf{v}_{K}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{K} d \Omega + \int_{\Gamma} \mathbf{F}_{s} \cdot \mathbf{v}_{K} d \Gamma + \sum_{i} \mathbf{F}_{i} \cdot \mathbf{v}_{Ki}$$

where \mathbf{f} are the voluminal forces,

 \mathbf{F}_{s} surface generalized forces,

 \mathbf{F}_i specific forces generalized with the node i.

The vector of the nodal reactions generalized on the element K is thus obtained starting from the generalized nodal forces:

$$\mathbf{R}_{K} = \mathbf{F}_{K} - \int_{K} \mathbf{f} \, dK - \int_{\partial K} \mathbf{F} \, \partial K - \sum_{i} \mathbf{F}_{iK}$$

in other words, one cuts off with the nodal forces the generalized external forces applied to the element K.

Note:

To note that the loading of temperature does not appear in the external forces: it intervenes in the expression of the constraints via the law of behavior.

In dynamics, to obtain the nodal reactions, it is advisable to in addition remove the efforts of inertia (acceleration) and damping related to speed.

Note:

Currently in Code_Aster the contributions of damping directly related to speed on the nodal reactions are neglected.

For the concepts result of the type mode_meca (resulting from modal calculations) the formula is:

$$\sum_{K} \mathbf{R}_{K} \cdot \mathbf{v}_{K} = \int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\mathbf{u})) \cdot \boldsymbol{\varepsilon}(\mathbf{v}_{K}) d \Omega - \boldsymbol{\omega}^{2}(\mathbf{M} \cdot \mathbf{u}) \cdot \mathbf{v}_{K}$$

where $\sigma(\epsilon(\mathbf{u}))$ are the generalized modal constraints,

- M is the matrix of mass,
- ω the own pulsation,
- u the field of displacement generalized of the mode,

 \mathbf{v}_{K} generalized unit elementary displacement.

For the concepts result of the type dyna_trans resulting from linear transitory dynamic calculations (DYNA_VIBRA/TYPE_CALCUL=' TRAN'), of type dyna_harmo resulting from harmonic calculations (DYNA_VIBRA/TYPE_CALCUL=' HARM') or of type evol_noli resulting from calculation dynamic non-linear transients (DYNA_NON_LINE) the expression of the generalized nodal reactions is obtained by:

$$\sum_{K} \mathbf{R}_{K} \cdot \mathbf{v}_{K} = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}(\mathbf{v}_{K}) d \Omega + (\mathbf{M} \ddot{\mathbf{u}}) \cdot \mathbf{v}_{K} - \mathbf{L}(\mathbf{v}_{K})$$

where \mathbf{M} is the matrix of mass;

ü the field of generalized acceleration;

- L the vector of the generalized external forces applied,
- \mathbf{v}_{κ} generalized unit elementary displacement.

Notice 1:

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 30/37 Clé : U4.81.04 Révision 88257bba5486

The nodal reactions are worthless in any interior point of the model and are not worthless a priori in a point of the edge subjected to a kinematic boundary condition (or with efforts of contact).

However the fact of neglecting the contribution of damping in dynamics can create a light variation compared to the exact result.

Notice 2:

If the keyword GROUP_MA is informed, the options `FORC_NODA' and `REAC_NODA' are calculated as follows:

 \mathbf{F}_{K} is calculated only on the elements requested then assembled. The result is different from a total calculation on all the field then reduced to the required elements. established method makes it possible to measure the reaction of a piece of model on another.

Caution: the calculation of 'REAC_NODA'on a subset of the model (via the keyword GROUP_MA) must be made with prudence. Example 4 below illustrates this kind of calculation.

In the current version of the code, for the results of the type dyna_harmo, it 'REAC_NODA' is calculated only on the model in entirety. Calculation on a subset of the model can be carried out manually by carrying out a calculation of 'FORC_NODA' on the group of meshs in question then by cutting off the external force from the got results.

Notice 3:

Only the resultant of the forces or the nodal reactions on a group of nodes has a physical direction (this group must correspond to at least an element of the model, for example an edge subjected to a boundary condition). It can be calculated with *POST RELEVE T* [U4.81.21].

Punctually, the field FORC_NODA or REAC_NODA does not have to be interpreted because the value in a node is directly related to the smoothness of the grid. Moreover the sign of these forces on the nodes of the same element can be against-intuitive whereas it is perfectly in agreement with the theory of the finite elements (for example on meshs QUAD8 located at the interface of a pure compression zone, the signs of the nodal forces at the tops and the mediums are opposite).

Notice 4:

The calculation of REAC_NODA account of the loadings distributed on the beams takes. Since you vary this loading on a non-linear calculation (change of EXCIT of a step of time to the other), the calculation of REAC_NODA is prohibited. It is necessary to divide its postprocessing into "packages" of sequence numbers, for which the loading is constant (i.e. it uses the same concept AFFE CHAR MECA in EXCIT).

Version 13

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas

Code Aster

Date : 22/05/2018 Page : 31/37 Clé : U4.81.04 Révision 88257bba5486

2.9.2 Example 1: structure charged with nodal force (2 elements QUAD4)

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 32/37 Clé : U4.81.04 Révision 88257bba5486

On this example, reactions to the nodes (2) are quite equal to the nodal forces (1) less the loading. They represent the reactions to the supports of the structure.

If one restricts calculation with the mesh M1, forces (3) to the nodes belonging to the border enters M1 and M2 are different. They represent the reaction of the model formed by M1 with the model formed by M2. To note that the nodal loading is divided by two because the two meshs contribute to it. Nodal reactions (4) are still equal to the nodal forces minus the loading.

On the calculation restricted with the mesh M2, nodal forces (5) according to OX are of contrary sign to the calculation restricted with the mesh M1, illustrating the principle of the action and the reaction.

2.9.3 Example 2: structure with loading of temperature

Data:

 $E = 1.10^{9} \text{ Pa}$ v = 0.3 $\alpha = 1.10^{-6}$

Results:

 $F_y = -3.410^4 N$ $F_{1x} = 7.810^3 N$ $F_{2x} = -1.210^3 N$

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 33/37 Clé : U4.81.04 Révision 88257bba5486

On this example, the nodal forces and the nodal reactions coincide because the only loading is a loading temperature.

If one restricts calculation with the mesh M2, forces according to OY remain the same ones but are different according to OX.

2.9.4 Example 3: structure under loading distributed (beam)

One considers a structure of type beam fixed and subjected to a loading of gravity on his higher half.

Figure 2.9.4-1: structure under loading distributed (left), FORC_NODA (right-hand side)

On this kind of structure, if one restricts the calculation of the forces and the nodal reactions to a under-part of the elements, <code>FORC_NODA</code> and <code>REAC_NODA</code> will not give the same result on the interface between the part isolated and the rest from the structure as shown in the figure 2.9.4-2 (on the force F_3).

Version 13

Date : 22/05/2018 Page : 34/37 Clé : U4.81.04 Révision 88257bba5486

Example 4: calculation of the reactions of support at the bottom of a stopping 2.9.5

In this example, one schematizes (very coarsely!) a stopping in 2D. The stopping is represented by a triangle DEF posed on a foundation represented by a rectangle ABCG (see diagram below).

One would like to calculate the reactions of support of the stopping on his foundation.

The loadings are:

- Gravity (which applies to the stopping and its foundation)
- The loading of pressure of to the water reserve (side upstream) applied to the edges CD and OF.
- The foundation is embedded on AB.

On the following illustrations, one represented the standard of the field REAC NODA when the keyword is used GROUP MA various ways:

- Illustration 1: one does not use GROUP MA (TOUT=' OUI')
- Illustration 2: GROUP MA=' BARRAGE' •
- Illustration 3: GROUP MA= ('STOPPING', 'OF') •
- Illustration 4: GROUP MA= ('STOPPING', 'OF', 'CD')

Diagram of the stopping

Illustration 1: REAC_NODA/TOUT=' OUI'

Titre : Opérateur CALC_CHAMP Responsable : SELLENET Nicolas Date : 22/05/2018 Page : 35/37 Clé : U4.81.04 Révision 88257bba5486

Illustration 2: REAC_NODA/GROUP_MA=' BARRAGE'

Illustration 3: REAC_NODA/GROUP_MA= ('STOPPING', 'OF')

Illustration 4: REAC_NODA/GROUP_MA= ('STOPPING', 'OF', 'CD')

Comments:

- Illustration 1 shows that when the keyword is not used GROUP_MA, the reaction of support are notworthless only on the edge of the model where one imposes displacements here (AB).
- Illustration 2 shows that if one calculates REAC_NODA on the only group STOPPING (formed only of "voluminal" elements) of the nonworthless reactions appear on DF (what one seeks) but also on OF, which must alert us. The reason of this behavior is that the loading of pressure on OF was not calculated, because the elements of edge which calculate this loading are not part of the group STOPPING.
- Illustration 3 shows that if one calculates REAC_NODA on the groups STOPPING and OF, the reactions are those which one seeks: they are nonworthless only on DF. Note: the image seems to show that nonworthless reactions exist on part of CD and FG, but it is an illusion due to visualization: nodal forces in D and F "dribble" on the adjacent elements.
- Illustration 4 shows that one should not add too many groups of edge here (CD). It is seen that nonworthless reactions of supports appear on CD. In this case, reaction on the point D is false.

Conclusion

If one wants to calculate the reactions of support of the stopping on his foundation, it is necessary to ask the calculation of *REAC_NODA* while specifying exactly **all** meshs of the stopping and **all** meshs of its edge subjected to a loading distributed.

It is highly advised to visualize the reactions calculated to check that they are nonworthless only on the interface between the stopping and its foundation.

Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 36/37 Clé : U4.81.04 Révision 88257bba5486

2.10 Calculation of a field user

The keyword factor CHAM_UTIL allows to calculate fields unspecified, known as "user" because of the name which will be affected for them in the concept result.

There can be several occurrences of CHAM_UTIL in order to connect the calculation of several fields. Treatment being carried out at the end of the order CALC_CHAMP, computed fields by the preceding keywords (CONSTRAINT, DEFORMATION...) are available here.

Either one asks for the calculation of a preset criterion, or one applies one or more formulas to calculate another field.

2.10.1 Operand NOM CHAM

It is a question of the field from which the calculations are done. The produced field will have the same type: ELGA, ELNO or NOEU.

2.10.2 Operand CRITERION

Request the calculation of a preset criterion. The criteria are (the paragraph 2.6.5 provides the expressions of each criterion):

- VMIS (for the stress fields),
- INVA_2 (for the fields of deformations),
- TRACE (for the deformation or stress fields).

Each one of these criteria produces a component (named x_1). One of the interests is to be able to calculate INVA 2 of any field of deformations.

2.10.3 Operand FORMULA

This makes it possible to calculate any expression function of the components of the field provided for ${\tt NOM_CHAM}.$

The produced field will contain as many components as of provided formulas: to the first formula the component will correspond x_1 , with the second x_2 , etc To 30 components can be thus created.

The field at exit is systematically prolonged to zero on the other components and where the field as starter is not defined.

Examples of formulas allowing to find the criteria <code>VMIS</code> and <code>INVA_2</code> can be found in the second part of the test <code>sslv104a</code>.

2.10.4 Operand NORMALIZES

Request the calculation of a preset standard. The standards are:

- L2: normalizes L_2 of a tensor
- FROBENIUS : normalizes of Frobenius of a tensor

The calculated standard is a quantity integrated (with the weak direction) on an element Ω_e . For a tensor A, the standard L_2 is worth:

$$N_{L_2} = \int_{\Omega_e} \sqrt{(A:A)} d\Omega_e$$
⁽¹⁾

The standard of Frobenius on the components A_{ii} of a tensor A:

$$N_F = \int_{\Omega_e} \sum_{i,j} |A_{ij}| \cdot |A_{ij}| \cdot d\Omega_e$$
⁽²⁾

Responsable : SELLENET Nicolas

Date : 22/05/2018 Page : 37/37 Clé : U4.81.04 Révision 88257bba5486

Each one of these standards produces a component (named X1) on an element. It is thus about one field ELEM. It should be noted that the difference between the two standards comes from the terms cross (except diagonal).

2.10.5 Operand NUME_CHAM_RESU

The produced field must be arranged, in a single way, in the concept result. The fields "user" are thus numbered while using NUME_CHAM_RESU and the type of the field. The name of the field will be thus of the type UT01 ELGA, UT22 NOEU, etc.

2.10.6 Example of calculation of a field user

Product the field UT02_ELGA with two components. X1 is the trace of SIGM_ELGA (comparable to the component TRSIG of SIEQ_ELGA) and X2 is the equivalent constraint of Von Mises (component VMIS of SIEQ_ELGA).

2.11 Operand TITLE

 \circ TITLE = title Title which one wants to give to the result of the order [U4.02.01].