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Note of use of the operators of breaking process for
the classical approach (non-linear elasticity)

Summary:

This document introduces the operators of breaking process available in  Code_Aster within the framework of
the classical approach. The classical approach is limited to non-linear elasticity. Advices of use are given.

It is advised to have taken knowledge of the methodological guide general in breaking process, which counts
the various approaches available [U2.05.00].
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1 General information

The classical approach is the historical approach for the breaking process. It was initially developed
within the framework of the linear elasticity, then extended to non-linear elasticity.

1.1 Linear elastic mechanics of the rupture into quasi-static

This paragraph points out the parameters characteristic in linear elastic mechanics of the rupture.

1.1.1 Factors of intensity of the constraints

The factors of intensity of the constraints characterize the singularity of the constraints at a peak of

crack.  Their  general  expression  is  form:  K= lim
r0

 r r .  Three  factors  of  intensity  of  the

constraints are defined, associated with the three modes of opening of the crack.

In linear elasticity, the factors of intensity of the constraints make it possible to break up the field of
displacement u  in a singular part and a regular part [1][6] :

u=uRK I uS
I
K II uS

II
K III uS

III
.

1.1.2 Rate of refund of energy

One considers a fissured elastic solid occupying the field  . Are:

u  the field of displacement,
T  the field of temperature,

f  the field of voluminal forces applied to  ,

g  the field of surface forces applied to a part S  of ∂ ,

U the field of displacements imposed on a part S d  of ∂ .

 the tensor of the constraints,

  the tensor of the deformations,

 th  the tensor of the deformations of thermal origin,

   , T   density of free energy.
 

The rate of refund of energy G  corresponds to the energy approach of the rupture of Griffith [5]. It is

defined by the opposite of the derivative  of the potential energy in balance W u   compared to the

field   :

    G=
−∂W u 

∂
 

with: W u =∫


  u  ,T d−∫


f ud−∫
S

gu d 

It is pointed out that the rate of refund of energy is equivalent to the integral of Rice in linear elasticity
[4].

In plane linear elasticity, the coefficients D‘intensity of constraints are connected to the rate of refund
of energy by the formula of Irwin:

G=
1−

2

E
K I

2
K II

2
 in plane deformations

G=
1
E
K I

2
K II

2
 in plane constraints
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G=
1−

2

E
K I

2K II
2 

K III
2

2
 with =

E
2 1

, in 3D

1.2 Extension to non-linear elasticity

The preceding definitions are rigorous only in linear thermoelasticity but extensions are possible with
the nonlinear problems. In particular, it is possible to define and calculate the rate of refund of energy
in nonlinear elasticity, provided that the loading remains radial and monotonous.

The application of the comprehensive approach apart from its field of validity led to nonsatisfactory
results: problems of “transferability”  of test-tubes with structures (effect small defect  [3]), bad taking
into account of the history of the loading (effect of hot preloading [7]),…
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2 Tally  of  use  of  the  features  of  breaking  process  in
Code_Aster 

2.1 Recall of the methods of calculating available

2.1.1 Method theta

Calculation of the rate of refund of energy
The difficulty of the calculation of the rate of refund of energy comes from derivation compared to the
field of an integral depending on this same field. A rigorous method is the method theta, which is a
Lagrangian method of derivation of the potential energy [8][9][10]. It consists in introducing a field 
and to  consider  transformations  F :MM M  area of  reference    in  a  field    who

correspond to propagations of the crack. These transformations should not modify the edges of the
field except the bottom of crack. 

This  method  is  detailed  in  [R7.02.01]  and [R7.02.04].  The use of  the  method,  developed  in  the
operator CALC_G of Code_Aster, is described with the §4.1.

With the method theta, the rate of refund of energy G  is solution of the variational equation:

∫
0

G s   s⋅m  sds=G  ,∀∈  

where  m  is  the unit  normal  at  the bottom of  crack  0  located in  the tangent plan at  ∂  and

returning in  ,  and where G   is defined by the opposite of the derivative of the potential energy

W u     with balance compared to the initial evolution of the bottom of crack   :

 G  =
−dW u   

d  ∣
=0

 

One notes   the whole of the fields   acceptable (see §4.1.1).

For a linear or non-linear thermoelastic problem the expression of G   is:

G = ∫


[u :∇ u .∇−  udiv ]d  terme classique

−∫


∂

∂T
∇ T .d   terme dûà lathermique

∫


[∇ f .u f. udiv ] d  terme dûaux forcesvolumiques f sur

∫
 F [∇ F .uF .udiv−n .

∂ 

∂n
]d   terme dûaux forces surfaciquesF sur F

 

If one places oneself on the assumption of great displacements (but always in nonlinear elasticity in
small deformations), the term should be replaced

∫


 iju i , p p , jd   by ∫


F ik S kju i , p p , jd

with S  the tensor of the constraints of Piola-Lagrange called still second tensor of Piola-Kirchoff,  F
the gradient of the transformation which makes pass from the configuration of reference to the current
configuration.
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If one takes account of the initial deformations ij
0  and of the initial constraints  ij

0 , the term should be

added:

∫

[ ij−

1
2
̊ ij  ˚ ij , k− ij−ij

th
−

1
2
̊ij  ˚ ij , k ]k d .

It would seem that this expression does not make it possible to impose at the same time initial strains
and initial stresses (even if the fields are in balance). It is thus not possible for the moment to impose
at the same time initial strains and initial stresses (see §2.2.5).

For a thermoelastoplastic problem the expression of G   reserve in Code_Aster is:

 

G =∫

 ij ui , kk , j−  k , k− ∂ 

∂T
T , kR y  p ,k

∂ 

∂ij

ij , k− ij ij , k
p k d  

with:

  total mechanical energy, 


p  the tensor of the plastic deformations,

p  the variable interns scalar isotropic work hardening (cumulated plastic deformation),

  one or more tensorial or scalar variables of kinematic work hardening,

 y  initial linear elastic limit,

R  the ray of the surface of load for isotropic work hardening.

For a radial and monotonous loading:  ij ij , k
p
= R y p , k

∂ 

∂ij

 ij , k  and one finds the expression

of G   in nonlinear thermoelasticity [R7.02.03].

Calculation of the factors of intensity of the constraints

In linear thermoelasticity, one can associate with  G  a symmetrical  bilinear form  g u ,v   by the
formula of polarization. One can then show that this bilinear form defines a scalar product for which
singular functions  uS  are orthogonal between them and orthogonal with regular displacement  uR

[R7.02.05].

Consequently, one can calculate  the factors  of  intensity  of  the constraints  from  g u , v  by the
method theta:

Finally, in a general way:

{K I=E g u ,uS
I


K II=E g u ,uS
II


in plane constraints

{ K I=
E

1−
2 g u ,uS

I


K II=
E

1−
2
g u ,uS

II


  in plane deformations and 3D 
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and K III=2 . g u ,uS
III
 in 3D

This calculation is possible in Code_Aster with the option CALC_K_G of the operator CALC_G.

Local calculation – total calculation

In dimension 2, bottom of  crack  0  brings back itself  to a point.  Only one field    is enough to
calculate the rate of refund of energy (option CALC_G) or factors of intensity of the constraints (option
CALC_K_G).

In dimension 3 dependence of G with respect  to the field    on the bottom of  crack is more
complex. In Code_Aster, one can calculate:

the  total  rate  of  refund G  correspondent  with  a  uniform  progression  of  the  crack  (option
CALC_G_GLOB);
the rate of  refund of  energy room  G  s   solution of  the preceding variational equation (option

CALC_G). Fields i  necessary for the resolution of the variational equation and the calculation of

G  s   are described in the §4.2.

2.1.2 Calculation by extrapolation of the field of displacements

Method of calculating of the factors of intensity of the constraints by extrapolation of displacement,
developed in the operator  POST_K1_K2_K3, is based on the asymptotic development of the field of
displacement in bottom of crack [R7.02.08].

In 2D, in a springy medium, linear, isotropic and homogeneous, the displacement and stress fields
known for the modes of opening of the crack (are analytically characterized by K1 ), of slip plan ( K2
) and of slip antiplan ( K3 ). In the case general in 3D, one can show that the asymptotic behavior  of
displacements and constraints is the sum of the solutions correspondents to modes 1 and 2 (in plane
deformations) and to mode 3 (antiplan), and of  four other particular solutions, but which are more
regular than the preceding ones.

In all the cases, the singularity is thus the same one and one can write the following relations in the
normal plan at the bottom of crack, in a point M  :

K 1M =lim
r0  E

8  1−
2
[U m] 2

r 
K 2M =lim

r 0  E

8  1−
2 
[U n] 2

r 
K 3M =lim

r0  E

8 1 
[U t ] 2

r 

 

with:
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t ,n  in the plan of the crack in M ,
t  tangent vector at the bottom of crack in M ,
n  normal vector at the bottom of crack in M ,

m  normal vector with the plan of the crack in M ,
[U ]  jump of displacement enters the lips of crack:

[U m]=U lèvre supérieure
−U lèvre inférieure⋅m  

r=∥MP∥  where P  is a point of the normal plan at
the bottom of crack in M , located on one of the
lips.

  
   

 

Three methods of extrapolation are available  [ R7.02.08 ] and are systematically put in work for the
calculation of  K1  ,  K2  and  K3  .  Starting from the factors of  intensity  of  the constraints,  the
formula of Irwin then makes it possible to calculate the rate of refund of energy G  . 
Ldistance from extrapolation has  ABSC_CURV_MAXI ESt  the only parameter  user. Advices for  the
choice of this parameter and the interpretation of the results are given in the §4.3.

Note:

• One can note that the signs of K2  and K3  depend on the orientation on t  and n  . This is
not too awkward insofar as the criteria of rupture or tiredness use only the absolute values of
K2  and K3 . 

• The method used here is theoretically less precise than calculation starting from the bilinear
form rate of refund of energy and displacements singular [R7.02.01 and R7.02.05] (operator
CALC_G). It however makes it possible to easily obtain relatively reliable values of the factors
of intensity of the constraints. The comparison of the various methods of calculating is always
useful to estimate the precision of the got results. 

Notice on the use of POST_K1_K2_K3 with elements of Barsoum with contact:

The contact is generally not taken into account correctly for the nodes with the quarter (except
for the formulation contact  continues).  The calculation of  K1  on a node top of elements of
Barsoum in the presence of contact is thus false. This is not quite serious in practice because
when there is contact, it is known that K1  must be null. 
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2.2 Field of validity in general

As that will be developed in the following chapter, the crack can be with a grid (classical calculation) or
not with a grid (use of method X-FEM). Unless otherwise specified, following information is valid in
both cases.

2.2.1 Model
 

Crack with  a  grid:  operators  CALC_G and  POST_K1_K2_K3 for  all  modelings  of  the continuous
mediums 2D and 3D are available: plane strains, plane stresses, 2D axisymmetric and 3D.

These modelings correspond for a two-dimensional medium to triangles to 3 or 6 nodes, quadrangles
with  4.8  or  9  nodes  and  segments  with  2  or  3  nodes,  for  a  three-dimensional  medium  with
hexahedrons with 8.20 nodes or 27 nodes, pentahedrons with 6 or 15 nodes, tetrahedrons with 4 or 10
nodes, pyramids with 5 or 13 nodes, faces with 4.8 or 9 nodes.

Crack nonwith  a grid (X-FEM): operators  CALC_G and  POST_K1_K2_K3 for all  modelings of  the
continuous mediums 2D and 3D are available (plane strains, plane stresses, axisymetry and 3D).
All the geometrical types of meshs are available, except the QUAD9 and the HEXA27.
For more specific information relating to X-FEM, one will be able to refer to [U2.05.02].

D_PLAN C_PLAN AXIS 3D
CALC_G    
CALC_K_G    
POST_K1_K2_K3    

Table 2.2.1-1 : Modelings available

2.2.2 Characteristics of material

Calculation rate of refund of energy G  by the method theta (operator CALC_G option CALC_G) is valid
for an isotropic homogeneous material, or for an isotropic bimatériau (crack with the interface of two
isotropic homogeneous materials to the different characteristics). 
The calculation of the factors of intensity of the constraints (by the method theta by using the bilinear
form associated with G  in the operator CALC_G option CALC_ K_ G , or by extrapolation of the field of
displacement with the operator POST_K1_K2_K3 ) is valid for an isotropic homogeneous material but
not for a bimatériau. 
Calculation of  G  or of the factors of intensity of the constraints remain also valid if  the properties
material (Young, Poisson's ratio modulus, thermal dilation coefficient and possibly elastic and module
limit  of  work  hardening)  are  not  homogeneous,  but  only  if  the  gradient  of  properties  material  is
orthogonal with the direction of the field theta (direction of propagation).

From a data-processing point  of  view, the operator  CALC_G can be used with a material  function
(operator DEFI_MATERIAU, keyword ELAS_FO) of a variable of order among all those being able to
be affected with a material  field (see [U4.43.03]: operator  AFFE_MATERIAU,  keyword  AFFE_VARC).
However, the operator CALC_G an alarm emits since the material field is affected with another variable
of  order that the temperature (TEMP).  The operator  POST_K1_K2_K3 support only the variables of
order TEMP and NEUT1.

Properties depending on 
variables of order

Bimatériau  (crack
with the interface)

Orthotropic material

CALC_G   -
CALC_K_G  - -
POST_K1_K2_K3 only TEMP and NEUT1 - -

Table 2.2.2-1 : Characteristics of material
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1er case: There is a bimatériau but the point of crack is in only one material, cf Appears 3.1-a. If one is
assured that the crown, definite enters the rays inferior R_INF and superior R_SUP, has like support
of  the elements of  same material,  calculation is possible whatever  the selected option. If  not only
options CALC_G and CALC_G_GLOB are possible.

Figure 3.1-a: Bimatériau: 1er case

2Nd case: There is a bimatériau where the point of crack is with the interface, cf Appears 3.1-b. To
date, only options of calculation of the rate of refund of energy (options CALC_G_GLOB and CALC_G)
are available. The calculation of coefficients of intensity of constraints is not possible in this case.

Figure 3.1-b: Bimatériau: 2Nd case 

2.2.3 Relation of behavior used in postprocessing of breaking process 

Logically, the relation of behavior used during postprocessing in breaking process is that which was
useful during mechanical calculation.

It is pointed out that the calculation of the rate of refund of energy is possible in the following cases
(for more details, to see it Table 2.2.3-1):

• linear thermoelasticity,
• nonlinear thermoelasticity (hyperelasticity),
• thermoelastoplasticity (criterion of Von Mises with isotropic or kinematic work hardening).

The calculation of the coefficients of intensity of constraints is not as for him possible solely in linear
thermoelasticity on the assumption of the small deformations.
 
In these cases, there is thus no reason to choose a different relation of behaviour between mechanical
calculation and postprocessing. In this case, one thus should not not to inform COMPORTEMENT under
CALC_G. If COMPORTEMENT is not present under CALC_G then, postprocessing will be carried out with
the relation of behavior of mechanical calculation.

The keyword factor COMPORTEMENT under CALC_G is useful only in the very particular cases  where
one wishes to carry out postprocessing with a law of behavior different from that which was used for
mechanical calculation. This keyword must be used with an extreme prudence.

RELATION CALC_G CALC_K_G POST_K1_K2_K3
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BEHAVIOR ‘ELAS’   
‘ELAS_VMIS_LINE’  - -
‘ELAS_VMIS_TRAC’  - -

BEHAVIOR ‘ELAS’   
‘VMIS_ISOT_TRAC’  - -

‘VMIS_ISOT_LINE’  - -

‘VMIS_CINE_LINE’ -*** - -

DEFORMATION ‘SMALL’   
‘GROT_GDEP’  (except X-

FEM)
- -

Table 2.2.3-1 : Compatible laws of behaviour for postprocessing in breaking process

2.2.4 Loading

Certain loadings are associated in the additional terms in the expression of the rate of refund of energy
or the factors of intensity of the constraints according to the method theta. The loadings which are
currently supported for calculation in breaking process are the following:

• Thermal dilation (transmitted via the variables of order);
• Voluminal forces: FORCE_INTERNE, GRAVITY, ROTATION ;
• Surface forces on the lips of the crack: PRES_REP , FORCE_CONTOUR , FORCE_FACE  ; 
• Initial deformation (crack with a grid only): PRE_EPSI . 

It is not possible to take into account a displacement imposed on the lips of the crack ( DDL_IMPO or
FACE_IMPO) or a nodal force on those.

The  loadings  are  transmitted  for  postprocessing with  the  keyword  EXCIT of CALC_G.  By  default
(keyword  EXCIT absent),  all  the loadings of  mechanical  calculation are used in  postprocessing in
breaking process. It is thus the advised method. If the keyword EXCIT is present with a part only of the
loadings, a message of alarm is emitted.

It is important to note that the only loadings which affect in a calculation of breaking process with the
method    are those applied to the elements inside the crown (enters  Rinf  and  Rsup  for a linear

thermoelastic behavior  or not linear [R7.02.01 §3.3],  between the bottom of  crack and  Rsup  for a
thermoelastoplastic relation [R7.02.07]).

Note:

If one does a calculation in great rotations and great displacements (keyword DEFORMATION
= ‘GROT_GDEP’ under the keyword factor BEHAVIOR) the only supported loadings are died
loads, typically an imposed force and not a pressure [R7.02.03 §2.4].

2.2.5 Initial state

For a crack with a grid, it is possible to take account of an initial state (either of the initial constraints,
or of the initial deformations) for the calculation of the rate of refund of energy. Two opportunities are
given to the user:

• to define initial deformations with the keyword PRE_EPSI in the order AFFE_CHAR_MECA (_F)
[U4.44.01] and to recover them under the keyword LOAD in the order CALC_G [U4.82.03] (see an
example of installation in the case test sslp102); it is pointed out that recovery is automatic;

• to recover a stress field resulting from a mechanical calculation (evol_noli resulting from the
order STAT_NON_LINE [U4.51.03]) with the keyword ETAT_INIT.

     
It is not possible simultaneously to take into account initial constraints and initial deformations.
• The taking into account of  the initial  constraint  is possible in the option  CALC_G only for the

moment. It will be possible with CALC_K_G and CALC_GTP soon.
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2.2.6 /frottement contact
   

The calculation of the sizes of breaking process in Code_Aster is not not validates if there is contact
with  friction between the faces of the crack. Indeed the calculation of the rate of refund of energy
does not take into account the dissipative phenomena.
On the other hand if  the elements of rubbing contact are beyond the defined crown enters  Rinf  and

Rsup  calculations of G , G  s  , K1  and K2  are valid.

On the other hand, it  is possible for the calculation of  G  and of  G s   only to take into account
conditions of contact without friction to avoid the interpenetration of the lips of the crack.

2.2.7 Factors of intensity of the constraints for a thermomechanical problem 
Factors  of  intensity  of  the  constraints  obtained  with  the  option  CALC_K_G are  calculated  while

evaluating bilinear form of G with a purely mechanical singular solution (asymptotic solution of 
Westergaard). If a thermomechanical problem is solved, one then does not take counts some 
singularity due to the thermal field.  An indicator of the error due to this approximation can be 
obtained while evaluating the difference enters G and  G_IRWIN . In practice, one evaluates in any point of

the bottom of crack  quantity  
∣G−G irwin∣

∣G∣
 ,  and one makes of  it  then  the  arithmetic  mean.  If  this

average exceed 50 %, it is estimated whereas one leaves the perimeter of validity of the approach,
and a message of alarm is emitted. However, the values of G are right. 

For POST_K1_K2_K3 , the similar remark is present. 

2.3 Validity of the calculation of G into non-linear

The essential problem in the nonlinear situations comes from the difficulty in separating the various
energy contributions. It is necessary to consider two very distinct classes of problems:

• that where, in spite of nonthe geometrical linearities or of behavior, one can display a potential
for the interior and external actions (nonlinear elasticity or hyperelasticity),

• that where such a potential does not exist (thermo-elastoplasticity).
For the first class, one can extend the criterion of Griffith by using the potential energy to balance, and
calculate the rate of refund of energy as in linear thermoelasticity.

For the second class of problem, the essential difficulty comes owing to the fact that dissipation is not
only  due to  the propagation  of  the crack  itself.  One cannot  distinguish any more  which share of
restored energy is used for the propagation and which share is directly used by another dissipative
phenomenon (plasticity in fact).

2.3.1 Nonlinear thermoelasticity

Not linearity  of  behavior: the relation of  nonlinear elastic  behavior  is described in  [R5.03.20].  It
should be noted that the elastoplastic law of Hencky-Von Put (isotropic work hardening) in the case of
a radial and monotonous loading is equivalent to the non-linear elastic law. The material hyperelastic
has a reversible mechanical behavior, i.e. any cycle of loading does not generate any dissipation. This
fact the relation of  behavior of material  derives from the free potential energy and one can give a
direction to the rate of refund of energy within the framework of the energy approach of Griffith.  

Not geometrical linearity: Calculations of the rates of refund of energy and factor of intensity of the
constraints are theoretically  not valid  in great deformations (in any case with the relations used in
Code_Aster).  It  however is allowed to the user to carry out these postprocessings starting from a
calculation in great deformations, while specifying,  in  CALC_G, DEFORMATION=PETIT. Load with
the user to make sure of the founded good of such a calculation.

We recommend for a calculation of G in great deformations to use an equivalence in opening. 
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That requires to carry out two mechanical  calculations: one in small  deformations, the other in the
formalism of deformations wished (for example GDEF_LOG ). One then recovers for two calculations in
postprocessing  the  openings  of  defect  on each  level  of  desired  loading;  for  calculation  in  small
deformations, one also calculates the rate of refund of energy. For a level  of loading given in great
deformations noted CHAR1, one determines the opening of the defect; one seeks for which level  of
loading (probably different and noted CHAR2) the opening in small deformations is the same one; one
calculates on this level  of  loading CHAR2 the rate of  refund of  energy in small  deformations. One
applies whereas the rate of  refund of  energy for calculation in great deformations and the level  of
loading CHAR1 is equal to that given in small deformations for the level of loading CHAR2. 

2.3.2 Thermo-elastoplasticity
 

The field of validity of the calculation of the rate of classical refund of energy is limited to the linear or
non-linear thermoelastic framework. To deal with the elastoplastic problem, two solutions are possible:

• to bring back itself to a non-linear thermoelastic problem with restrictive assumptions,
• to use another formulation, like that of the energy approach.

 

2.3.2.1 Equivalence enters a nonlinear thermoelastic problem and a thermoelastoplastic problem

The  relation  of  nonlinear  elastic  behavior  gives  the  opportunity  of  dealing  with  the  problems  of
breaking process by approaching the thermoelastoplastic behavior. In the case of one monotonous
radial loading,  it  makes it  possible to obtain strains and stresses of  the structure similar to those
which one would obtain if the material presented an isotropic work hardening. The use of the indicators
of discharge and loss of radiality makes it possible to make sure of the equivalence of the laws of
behavior, cf §3.3.

  
But the conditions of loadings proportional and monotonous, essential to ensure the coherence of the
model with actual  material,  lead to important restrictions of  the field of  with the capable problems
being dealt by this method (thermal in particular can lead it to local discharges).

2.3.2.2 Another formulation

See methodological guide [U2.05.00]
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3 Implementation of a study of breaking process

3.1 Grid

3.1.1 Case of a crack with a grid

Conditions to be respected: there is no condition to respect a priori on the type of grid in bottom of
crack.  However,  D E  the quality  of  the grid  depends digital  quality  on the  results  resulting  from
mechanical  calculation (displacements and constraints) and by consequence from quality  from the
sizes in breaking process. 

The definition of the crack by the operator DEFI_FOND_FISS require relative groups of meshs:

• with the meshs of the bottom of crack (linear meshs in 3D, mesh not in 2D),
• with the meshs of the lips of the crack (grid surface in 3D, linear meshs in 2D). 

Remarks and advices:

• Calculations of the sizes of breaking process are valid for linear or quadratic elements, but it is
strongly advised to use quadratic elements, in particular in 3D. The calculation of these sizes
indeed requires to determine with a good approximation the deformation and stress fields
which strongly vary  in the vicinity  of  the bottom of  crack.  However, to identical  number of
nodes, the quadratic elements give better results that the linear elements.

• The calculation of the factors of intensity of the constraints with the operator POST_K1_K2_K3
, or with the options ‘CALC_K_G’ or ‘CALC_K_MAX’ of the operator CALC_G can be carried
out  only  if  the lips of  the crack are initially  stuck,  which corresponds to  CONFIG_INIT='
COLLEE' for the operator DEFI_FOND_FISS . 

• UN radiant grid in bottom of crack is not obligatory: rays Rinf  and Rsup  are not related to the

grid and the crown can be “with horse” on several elements. Nevertheless the practice shows
that a radiant grid in bottom of crack gives digital good performances.

• Maillor  GIBI  comprises  a  parameterized  automatic  procedure  which  makes  it  possible  to
conceive grids of blocks fissures in 3D. This procedure was developed by EDF-R&D and was
validated to ensure the good quality of the grid. One obtains a grid with the format GIBI which
can  recognize  Code_Aster (order  PRE_GIBI).  The  user  informs  a  certain  number  of
geometrical parameters (dimensions of crack, size of block,…) or topological (modeling of the
basic torus of crack in crowns, sectors and slices, déraffinement, many elements,…) and the
software generates a block  fissures,  which can then be integrated in  another  structure.  A
similar procedure is under development in the platform Salomé and should be available end
2010.

• During the quadratic use of grids, it is strongly advised to position the nodes mediums of the
quadratic elements concerning the bottom of crack to the quarter of the edges (grid of the type
Barsoum).  Thus dependence  in  r  field  of  displacement  is  represented  better  and the
quality  of  the results is  improved.  One can directly  introduce of  type of  elements into  an
existing  quadratic  grid  by  the  keyword  MODI_MAILLE (option  ‘NOEUD_QUART’)  order
MODI_MAILLAGE [U4.23.04].  The computing time is not modified,  but the profit  in  term of
quality of the results is considerable.

Checking of the quality of the grid: To assess the quality of the grid it is advised to carry out an
elastic  design and to  use the estimators of  errors of  discretization:  estimators of  errors  of  ZHU-
ZIENKIEWICZ  in  elasticity  2D  [R4.10.01],  the  estimator  of  error  by  residue  [R4.10.02]  and  it S
estimators in Quantity of  Interest [R4.10.06], Quantities of  Interest available being  K1 ,  K2  and
K3  resulting from the method n°3 of POST_K1_K2_K3.

These estimators are established in  Code_Aster in  the order  CALC_ERREUR [U4.81.06].  They are
activated  starting  from the  following  options:  ERZ1_ELEM for  ZZ1 ,  ERZ2_ELEM for  ZZ2  and
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ERME_ELEM for the estimator in residue by element. The estimate in Quantity of Interest requires the
installation of a dual problem (see for example the case test zzzz257).

 Case of a crack nonwith a grid
 

Conditions to respect: L‘use of  method X-FEM makes it  possible to overcome certain difficulties
related to the grid. In particular, a free grid of the healthy structure is enough. However, a sufficiently
fine grid remains necessary in the zones to strong gradient (around the bottom of crack for example).
It is true qu’ in linear elasticity, enrichment by the functions asymptotic to improve the precision of the
method: with same size of mesh, elements X-FEM will be thus more precise in bottom of crack than
the classical elements. But that only affects very locally. One thus needs a grid relatively refined in
bottom of crack.

As comparison a classical grid with a torus enters to n  layers of elements in bottom of crack and a
free grid X-FEM, one can say that the size of elements X-FEM in bottom of crack must be about that
of the elements of the layer n /2  torus.

Only the estimator of error by residue is available for elements X-FEM, in 2D only.

Remarks and advices:

• To fix  Idées, for a crack length  a  in infinite medium, the size of  the elements in bottom of
crack must be enters  a /10  and  a /20  to obtain an error on the rate of  refund of  energy
between 1% and 2%.

• In order to obtain a grid refined in bottom of crack, two approaches can be considered:
1) The introduction of a block crack consists in defining during the creation of the grid, a box
including the crack. The grid in this box will be regulated, and the smoothness of the grid must
be a parameter of the procedure of grid. The box must be sufficiently broad if  the study the
propagation of  the crack is considered. It  is also necessary to create a zone of  connection
between the regulated box, and the rest of the structure with a grid into free. One can also use
the advanced features of the mailleurs as Blsurf+GHS3D who allow to define cards of sizes
locally.
2) The second approach consists in carrying out an adequate grid by successive refinements
of  an initial  free grid considered to be coarse [U2.05.02]. The criterion of  refinement is the
distance to the bottom of crack (operator RAFF_XFEM [U7.03.51]).

3.2 Linear elastic design

3.2.1 Case of a crack with a grid

The calculation of  the various parameters of  the breaking process is made only in postprocessing
classical mechanical calculation. The implementation of a study is thus the following one:

•Reading of the grid

•Definition of the model, materials, the loadings

•Mechanical calculation with MECA_STATIQUE or STAT_NON_LINE 

•Definition of the characteristics of the crack with DEFI_FOND_FISS [U4.82.01]. 

•Calculation with the operator CALC_G [U4.82.03]:

•option CALC_G or CALC_G_GLOB : calculation of G
•option CALC_K_G : calculation of K  and of G
•option CALC_K_MAX, G_MAX, G_MAX_GLOB : maximization of K  or of G  in the presence

of or not signed signed loadings

•Calculation with the operator POST_K1_K2_K3 [U4.82.05]: calculation of K  and of G  starting
from the jumps of displacement on the lips (extracted directly by the operator from the field from total
displacement).
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3.2.2 Case of a crack nonwith a grid
 

In the case of a crack nonwith a grid, there is a preliminary stage of definition and enrichment of the
model (method X-FEM, cf  [U2.05.02] for more details).  The implementation of  a study is thus the
following one:

• Reading of the grid (without crack)
• Definition of the healthy model, materials
• Definition of the crack: DEFI_FISS_XFEM
• Creation of the enriched model: MODI_MODELE_XFEM
• Mechanical calculation with MECA_STATIQUE or STAT_NON_LINE 
• Calculation with the operator CALC_G [U4.82.03]:

- option CALC_G or CALC_G_GLOB : calculation of G
- option CALC_K_G : calculation of K  and of G

• Calculation  with  the  operator POST_K1_K2_K3 [U4.82.05]:  calculation  of  K  and  of  G
starting from the jumps of displacement on the lips

• Creation  of  the  grid  of  visualization  and  visualization  of  the  fields  results  (forced,
displacement): POST_MAIL_XFEM and POST_CHAM_XFEM.

  

3.2.3 Use of the results

The factors of intensity of the constraints and the rates of refund of energy calculated can be used for:

• to evaluate the risk of starting of the defect (comparison with tenacity);
• to calculate the propagation velocity  in fatigue of  the crack (law of  Paris) [U4.82.04]  for  a

possible calculation of propagation (by mending of meshes or with  PROPA_FISS for a crack
nonwith a grid [U4.82.11]);

• to estimate the direction of junction of the crack requested in mixed mode [2], [8], [U4.82.03]
[U4.82.04].

 

3.3 Non-linear calculation: Indicators of discharge and loss of radiality 

These  indicators  make  it  possible  to  locate  the  local  discharges  and  the  loss  of  radiality  (field
DERA_ELGA and DERA_ELNO calculé with CALC_CHAMP.

Attention with the interpretation of the indicators of discharge and loss of radiality: the value given to
time  t i  corresponds to the diagnosis from what occurs between t i  and t i1 . Thus, the computed
value with the last step of time does not have a direction. The indicator of discharge is negative to
indicate a local discharge, and the indicator of radiality is worth 0 for a radial way.

Note:

The interpretation of the indicator of loss of radiality is not easy. One cannot in particular define
threshold from which calculation is not valid any more.
An alternative solution can consist in comparing in postprocessing of an elastoplastic calculation
it  G  nonlinear  rubber  band  with  or  without  recalculation  of  the  constraints  (keyword
CALCUL_CONTRAINTE of CALC_G).
If one remains well in the field of validity of the calculation of G  (radial and monotonous loading),
then the results with or without  recalculation of the constraints are identical.  As soon as one
leaves this field of validity, the variation grows. One can thus check a posteriori that one remains
well on the design assumptions of G .
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4 Recommendations of use

4.1 Introduction of the field theta

4.1.1 Conditions to respect

The field   is a field of vectors, definite on the fissured solid, which represents the transformation of
the field during a propagation of crack. This field must check the following conditions:

• the transformation should modify only the position of the bottom of crack and not the edge of
the field ∂ . The field   must thus be tangent with ∂  (in particular lips of the crack), i.e

while noting n  the normal with ∂ :  .n=0 sur∂ .

• The field   must be locally in the tangent plan with the lips of the crack and in normal 3D with
the edge to which it belongs. This corresponds to the direction of propagation of the crack.

• The field   must also be continuous on  .

4.1.2 The Council on the choice of the crowns Rinf and Rsup

In Code_Aster, the choice was made to define the field   in the following way:
• the direction of the field is colinéaire to the direction of propagation of the crack. In 3D, one

takes over the local leadership of the projection of the node considered on the bottom of crack;
• the standard of  is defined starting from two crowns (or tori in 3D), of ray Rinf  and Rsup . In

on this side Rinf , the module of the field theta is constant, with beyond it is null and it is linear
between the two, cf. Figure 4.1.2-1.

 

The construction of the field theta is described precisely in [R7.02.01]. It is established in Lhas order
CALC_G.

In 2D and axisymmetric the bottom of crack 0  limits itself to a point. The user defines: 

• rays Rinf and Rsup ,

• the module ∣0∣  in bottom of crack (equal to 1 by default), 

• direction of propagation of the crack m . 

In 3D the user defines:
• rays  Rinf s  and Rsup s  ,
• the topology of the bottom of crack: opened or closed according to if the crack is emerging or
not,
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• the module ∣0∣ in bottom of crack (only for the calculation of G  total if not them P  fields


i necessary for  the resolution of  the variational  equation and the calculation  of  G s   are

calculated automatically according to the family of functions of interpolation chosen, to see §4.2).
   

The directions of the field theta except ends are calculated automatically starting from the lips of the
crack, but the user can possibly define them itself by using the keyword DIRE_THETA.

Note:

•The fields of displacement and constraint are singular in bottom of crack; the precision of
calculation is thus less good in the vicinity of the bottom. It is noted that the selected shape
of the field theta (  .m  constant  between 0 and Rinf  )  precisely allows to cancel the

contribution  of  the  classical  term  of G   inside  the  first  crown  (term  in

∫
[ u :∇ u . ∇− udiv ] d  ). 

•To  forget  only  the  loadings  applied  beyond Rsup have  a  worthless  contribution  in
postprocessings  of  breaking  process.  This  can  be  useful  if  one  applies  a  loading  not
supported like FORCE_NODALE, DDL_IMPO (in 2D) or FACE_IMPO (in 3D).

The Councils on the choice of the rays  Rinf  and  Rsup : the calculation of the sizes of breaking
process is theoretically independent of the choice of the crown of integration (in the absence of loading
on the lips, voluminal or thermal). Nevertheless it is preferable to comply with some rules:

• never not to take Rinf  or too small compared to dimensions of the problem because singular
displacements are badly calculated in the vicinity of the bottom of crack (cf notices above);

• the higher ray Rsup  can be as large as one wants provided that the crown thus defined either

contained in  the solid.  In 3D,  a ray should  not  be taken  Rsup  too much large,  if  not  the
direction of the field theta (calculated by projection on the bottom of crack) can be vague;

• the choice of the rays Rinf  and Rsup  is independent of the topology of the grid. However, if it
grid is radiant at a peak of crack, it is recommended to take crowns of integration coïncidentes
with the crowns of the grid (reduction of the oscillations of  G  along the bottom of crack in
3D);

• in HTermo-elastoplasticity, one uses a crack as notch. One will make sure that the lower ray
Rinf  is quite higher than the ray of the notch.

• To take several consecutive crowns to check [R1, R2], [R2, R3], [R3, R4],…

To set the ideas, for a crack length has in infinite medium, the size of the elements in bottom of crack
must be lower than a /10  louseR to obtain a reasonable error (about % on K1 ). For the crowns of

integration, one takes then generally Rinf  about 1 to 3 times size of the elements in the vicinity of the

bottom; and Rsup  from 3 to 7 times size of the elements.

An automatic determination of Rinf  and Rsup  is possible (these keyword are optional). If they are not

indicated, they are automatically calculated starting from the maximum h  sizes of meshs connected

to the nodes of the bottom of crack. It was selected to take Rsup=4 h  and Rinf=2h  . If one chooses

the value automatically calculated for  Rinf  and Rsup  , it  is advisable however to make sure that
these values (displayed in the file .mess) are coherent with dimensions of the structure. 

4.1.3 Problem of the discretization in 3D

In 3D, for  a knot slip of  the bottom of  crack,  the direction of  propagation is defined as being the
average of the normals to the meshs segments of the bottom of crack on its left  and its right-hand
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side. For the nodes ends, the normal is calculated starting from one only mesh, and can thus be less
precise, even distorts. 

 

Crack  emerging  orthogonally  at  the  edges:  L be  vectors  of  direction  of  propagation  in  the
beginning  and  at  the  end  of  the  bottom  by  taking  of  account  the  edges  of  the  structure  are
automatically  calculated. Keywords  DTAN_ORIG and  D TAN_EXTR (order  DEFI_FOND_FISS for the
calculation of G on a crack with a grid) which leave ettent to impose the direction of these vectors thus
do not need to be specified. 

 

Emerging crack in a nonperpendicular way : at the emerging end of the bottom of crack, the field

  cannot simultaneously be normal with the edge to which it belongs (in the tangent plan of the lips

of the crack) and check the condition  .n=0  on ∂ .

The advised solution is to impose like direction of propagation at the ends (keywords DTAN_ORIG and

DTAN_EXTR) the average of the normal at the bottom of crack in this point 1  and of the tangent to

the edge 2 .

One can also define the direction of  the field    on all  the nodes of  the bottom of  crack with the
keyword  DIRE_THETA in Lhas order  CALC_G. In the vicinity of the emerging end, one chooses like

direction the average of the normal at the bottom of crack in this point 1  and of the tangent to the

edge 2 .

Figure 4.1.3-1: Direction of propagation at the ends of the crack

4.2 Methods of interpolation in 3D

4.2.1 Tally general

The  rate  of  refund  of  energy  room  G s   is  solution  of  the  variational  equation

∫ 0

G  s s .m  sds=G , ∀∈ .

To solve this equation:
the scalar field  is broken up  G s   on a basis which we note   p j s  1≤ j≤N .  That is to say  G j

components of G s   in this base: G s = 
j=1

N

G j p j s .

one gives oneself a base of functions tests for    while choosing P  fields 
i  independent for the

trace of the field   on the bottom of crack 0  :    i  s 1≤i≤P .

 G j  are given by solving the linear system with P  equations and N  unknown factors:
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
j=1

N

aijG j=bi , i=1, P  

with a ij=
k=1

M

k
i∫

O

p j sqk  s. m sds

b i=G 
i


      
This system has a solution if one chooses P  fields 

i  independent such as: P N  and if M N .

It can comprise more equations than unknown factors, in which case it is solved within the meaning of
least squares.
 

4.2.2 Methods of smoothing of G and Theta

In Code_Aster, two families of bases (cf [§2.2] were chosen):

• polynomials of LEGENDRE  j s   of degree j   ( 0= j=7 ),

• functions of form of the node k  of  0  :  ( ) k s  ( 1 =k=NNO  = many nodes of  0 ) (of

degree 1 for the linear elements and of degree 2 for the quadratic elements).

These families of  bases and the linear systems to solve  are described precisely  in  the reference
material [R7.02.01]. The use of the functions of form is called ‘LAGRANGE’ in Code_Aster, including
one alternative is available:

•‘LAGRANGE_NO_NO’ : simplified version of the smoothing of LAGRANGE, allowing in certain cases to
get more regular results in bottom of crack.

Several  options is thus possible according to the base of  functions tests for theta and the base of
decomposition for G . They are summarized daNS the following table:

Theta

Polynomials of LEGENDRE Functions of form

G s 
Polynomials of 
LEGENDRE

LISSAGE_THETA= ‘LEGENDRE’
LISSAGE_G = ‘LEGENDRE’

LISSAGE_THETA=' LAGRANGE'
LISSAGE_G= ‘LEGENDRE’

Functions of 
form

LISSAGE_THETA = ‘LAGRANGE’
LISSAGE_G = ‘LAGRANGE’
or ‘LAGRANGE_NO_NO’

Table 4.2.2-1 : Possible combinations for the calculation of G  in 3D

4.2.3 Remarks and advices

• Choice of the method: it is difficult to give a preference to one or the other method. In theory both give
equivalent digital results. Nevertheless the method Theta: Lagrange is a little more expensive in time CPU
than the method Theta: Legendre. It is essential to use several methods and to compare results, in order
to consolidate the validity of the model. 

• Choice of the maximum degree of the polynomials of Legendre : this choice depends amongst nodes
in bottom on crack. If there are a small number of nodes (ten) it is useless to take a degree higher than 3
(it is conceived easily that the results are poor if one tries to find a polynomial of degree 7 passer by 10
points).  Beyond of  about  twenty  nodes in  bottom  of  crack  one can  use degrees going  up to  7.  The
experiment shows that the choice of a degree equal to 5 gives good performances in most case (cf notices
below). 
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• Case of the closed cracks: if the bottom of crack is a closed curve, problems of continuity of the solution
at the arbitrarily  selected point as curvilinear X-coordinate origin prohibit  the use of  the polynomials of
Legendre. If the bottom of crack were declared “closed” in DEFI_FOND_FISS , one must use the functions
of form (Lagrange) to describe the functions G  and  . 

• Problem of nonthe respect of symmetry: if one models only half of the solid compared to the crack, one
must have a curve in theory G  s   whose slope of the tangent is worthless with the interface of symmetry.
This is not respected by the two methods. Values of  G s   obtained at the ends of the bottom of crack
must always be interpreted with prudence, especially if the crack is emerging in a nonperpendicular way
(see §4.1.3).

• Problem  of  the  oscillations  with  Lagrange: oscillations  can  appear  with  the  Lagrange method,  in
particular if the grid comprises quadratic elements. These oscillations are related to a radial profile of the
field  theta  which  is  different  on  the  nodes  top  and  the  nodes  mediums.  A  smoothing  of  the  type
‘LAGRANGE_NO_NO’ allows to limit these oscillations. In addition, if the grid is radiant in bottom of crack
(crack with a grid), it is pointed out that it is recommended to define crowns R_INF and R_SUP coinciding
with the borders of the elements. 

• Case of the free grids: strong oscillations can appear with the Lagrange method. A smoothing of the type
‘LAGRANGE_NO_NO’ limit these oscillations, but can be insufficient. In this case, it is recommended to use
the operand NB_POINT_FOND of  CALC_G. The choice of a report of about 5 between the total number of
points in bottom of crack and the number of points of calculation seems suitable to limit  the oscillations
with the method Theta: Lagrange. A choice of 20 points in bottom of crack is often judicious.

• Performance : the operand NB_POINT_FOND can also be used in order to reduce the computing time of
CALC_G.

Illustration of the problems of oscillations with Legendre: Sa case hears where the solution is constant on

the bottom of crack Gexact
s =0 s  . If the term in front of the polynomial of Legendre of degree seven is

badly calculated, with a factor   close (but all the other coefficients in front of the other polynomials are worth

0 exactly), then the digital result is: G  s=0 s⋅7s   . The relative mistake made on G  is thus: 

e=
G  s−G exact

 s

Gexact
 s

=⋅
7 s

0 s
=15

P7 2s
l
−1

P0 2s
l
−1

=15P7 2s
l
−1

.

If  the report  is traced  
e


 according to  the normalized  curvilinear  X-coordinate  
s
l

,  the following figure is

obtained.

The error at the ends (in  x=0  and in  x= s
l ) is approximately 2 to 3 times larger than the maximum error

inside the bottom. For example, if   is worth 10−2  (either 1% of error), one will make a maximum mistake of
1.5% everywhere, except at the ends where the error will reach 4%.
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Figure 4.2.3-1 : report of the relative error on the precision
according to the normalized curvilinear X-coordinate

4.3 The Councils for calculations with POST_K1_K2_K3

Choice of the distance from extrapolation: the distance from extrapolation  ABSC_CURV_MAXI is
the only parameter user. In general,  this distance is selected equal to 3 to 5 times the size of  the
elements in the vicinity  of  the bottom of  crack. In the case of  a crack with a grid,  the parameter
ABSC_CURV_MAXI is optional. The value by default is then equal to 4h  where h  is the maximum size
of the meshs connected to the nodes of the bottom of crack.
Case of the cracks with a grid: the grid must be preferably quadratic and comprise sufficient nodes
perpendicular to the bottom of  crack.  In addition,  the results are clearly  improved if,  if  the grid is
composed of  quadratic  elements,  one moves  nodes mediums (edges which  touch the bottom of
crack), with the quarter of these edges by bringing closer them to the bottom to crack. This is made
possible by the keyword MODI_MAILLE (option ‘NOEUD_QUART’) order MODI_MAILLAGE [U4.23.04].
Case of the cracks nonwith a grid:  Lprecision of the method has is sensitive to the choice of the
zone of enrichment of method X-FEM (parameter RAYON_ENRI of  DEFI_FISS_XFEM ). In the ideal,
the ray of enrichment and the maximum curvilinear X-coordinate ABSC_CURV_MAXI are about three
times the size of stops minimal grid. 
Performances: in the case X-FEM, calculations are rather consuming in time and memory if there are
many  points  on  the  bottom  of  crack.  The  use  of  the  keyword  NB_POINT_FOND allows  to  limit
postprocessing to a certain number of points équi-distribute along the bottom. 

4.4 Standardisation, symmetries

4.4.1 2D plane constraints and plane deformations

In dimension 2 (plane constraints and plane deformations), the bottom of crack is tiny room to a point 
and the value G   exit of the order CALC_G is independent of the choice of the field  :

  
 G=G  ∀∈

4.4.2 Axisymetry

Into axisymmetric it is necessary to standardize the value  G   obtained with  Code_Aster for the
options CALC_G, G_MAX and G_BILI :
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    G=
1
R
G 

where R is the distance from the bottom of crack to the axis of symmetry [R7.02.01 §2.4.4].

For the option CALC_K_G, values of G  and of K  provided in table result are directly the local 
values, it thus should not be standardized.

4.4.3 3D

In dimension 3, the value of G   for a field   data is such as:

   g =∫ 0

G  s  s .m  sds  

  
By default, direction of the field   in bottom of crack is the normal at the bottom of crack in the plan 

of the lips. By choosing a field   unit in the vicinity of the bottom of crack, one has then:

 s.m  s=1  
     

and:

  G =∫ 0

G  sds  

 
That is to say G  the total rate of refund of energy, to have the value of  G  per unit of length, it is
necessary to divide the value obtained by the length of the crack l  :

G=
1
l
G .

 
4.4.4 Symmetry of the model

It  is  possible  to  take into  account  a possible  symmetry  of  with  the problem  dealt  directly  on the
calculation of  the rate of  refund of  energy  G  and factors of  intensity  of  the constraints.  See the
keyword SYME in CALC_G [U4.82.03] and POST_K1_K2_K3 [U4.82.05].

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is
provided as a convenience.
Copyright 2019 EDF R&D - Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version
default

Titre : Notice d'utilisation des opérateurs de mécanique d[...] Date : 01/09/2016 Page : 26/28
Responsable : GÉNIAUT Samuel Clé : U2.05.01 Révision  :

e86779df3f82

5 Conclusions

The points to be retained are the following:

• The study of a crack in elasticity (linear or not) can be done on a crack with a grid as on a
crack nonwith a grid.  In both cases the grid  must be sufficiently  fine in  the vicinity  of  the
bottom of crack to collect the singularity of the constraints correctly.

• Calculations are possible on a nonplane crack,  but the user must take care that it  remains
sufficiently  regular  so  that  the  design  assumptions  are  valid:  one  should  not  have  a
geometrical  singularity  on  the  bottom  or  the  lips.  Typically,  calculation  is  licit  for  an
axisymmetric crack, but not for a corner.

• In linear  elasticity, several  operators (CALC_G,  POST_K1_K2_K3)  and several  methods (of
extrapolation, smoothing,…) are available. It is essential to compare the results of the various
methods and operators to make sure of good quality of the model. It is also recommended to
evaluate the sensitivity of the result to the choice of the parameters of the operators (rays of
integration) and to the refinement of the grid.
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6 Documentation  of  Code_Aster relating  to  the  breaking
process 

Reference documents:

[R7.02.01] Rate of refund of energy in linear thermoelasticity
[R7.02.03] Rate of refund of energy in nonlinear thermoelasticity
[R7.02.04] Lagrangian representation of variation of field
[R7.02.05] Calculation of the stress intensity factors in plane linear thermoelasticity
[R7.02.07] Rate of refund of energy in thermo-élasto-plasticity
[R7.02.08] Calculation of  the coefficients of  intensity of  constraints by extrapolation of  the field of

displacements

Documents of Use:

[U4.82.01] Operator DEFI_FOND_FISS
[U4.82.03] Operator CALC_G
[U4.82.05] Operator POST_K1_K2_K3
[U4.82.08] Operator DEFI_FISS_XFEM

Case test of Validation:
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Particularités
hpla310 Fissure radiale dans un barreau soumis à un choc thermique X X X X Thermique

hpla311 X X X X X Thermique
hplp100 Plaque fissurée en thermoélasticite X X X X X Thermique ; Sensibilité
hplp101 Plaque fissurée en thermoélasticité X X X X X X Thermique ; Sensibilité

hplp310 X X X X X Thermique ; contact

hplp311 X X X X X Thermique

hplv102 X X X X Thermique
hplv103 G en thermoélasticité 3D pour une fissure circulaire X X X X X X Thermique

hsna120 X X X X Thermique ; propagation
sdls114 Facteurs d'intensité des contraintes modaux X X X X X X K_G_MODA
ssla310 Fissure radiale à l'interface d'un bimatériau X X X X Bimatériau
ssla311 Fissure circulaire soumise à une charge annulaire X X X X
sslp101 Plaque fissurée en traction X X X X X
sslp102 Calcul de G avec déformations initiales X X X X Etat initial
sslp103 Calcul de K1 et K2 pour une plaque circulaire fissurée X X X X X Mode mixte
sslp310 Fissure pressurisée dans un domaine plan illimité X X X X MACR_ELAS_MULT
sslp311 Fissure centrale dans une plaque à deux matériaux X X X X Bimatériau
sslp313 Fissure oblique dans une plaque infinie en traction X X X X X Mode mixte ; Arlequin
sslp314 Fissure déviée à l'interface de 2 plaques élastiques X X X X X
sslp315 Propagation d'une fissure débouchante dans une plaque 2D X X X X X Propagation
sslv110 Fissure semi-elliptique dans un milieu infini X X X X X X X X Sensibilité
sslv134 Fissure circulaire en milieu infini X X X X X X X X X G_BILI, G_GLOB, CALC_K_MAX

sslv310 X X X X X
sslv311 Fiss en quart d'ellipse au coin d'un disque épais X X X X

sslv312 X X X X X
sslv313 Tube sous pression fissuré X X X X X X X
sslv314 Propagation de fissure dans une plaque 3D en mode I pur X X X X X Propagation
sslv315 Propagation de fissure inclinée dans une plaque 3D X X X X X Propagation
ssnp102 Plaque entaillée en plasticité X X X X X

ssnp110 X X X X X X
ssnp311 Fissuration en mode II d'une éprouvette elastoplastique X X X X
ssnp312 Fissure parallèle à une interface dans une CT bimétallique X X X X
ssnv108 Eprouvette CT en non linéaire X X X X X X
ssnv166 Cylindre fissuré sous chargement multiple X X X X X Contact
ssnv192 Eprouvette avec fissure centrale X X X X
ssnv185 Fissure débouchante dans une plaque 3D X X X X X X X

Fissure circulaire dans une sphère soumise à une 
température uniforme sur les lèvres

Fissure radial dans un cylindre épais sous pression et 
chargement thermique
Fissure au centre d'une plaque mince soumise à un flux 
thermique
G en thermoélasticité pour une fissure circulaire en milieu 
infini

Propagation d'un réseau de fissure en fatigue 
thermomécanique

Fissure semi-elliptique débouchante en peau interne dans un 
cylindre sous pression

Fissure elliptique perpendiculaire à l'interface entre deux 
matériaux

Fissure de bord en élastoplasticité dans une plaque 
rectangulaire
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