

Titre: WTNL102 - Problème mono dimensionnel de convection[...]

Date: 04/08/2011 Page: 1/5 Responsable: Sylvie GRANET Clé: V7.30.102 Révision: 6802

WTNL102 - Dimensional mono problem of forced convection

Summarized:

It is the dimensional mono transport of heat by a flux constant velocity. The hydraulic mode is characterized by a linear pressure in space. The reference solution is analytical.

Titre: WTNL102 - Problème mono dimensionnel de convection[...]

Date: 04/08/2011 Page: 2/5 Responsable: Sylvie GRANET Clé: V7.30.102 Révision: 6802

Problem of reference

1.1 Geometry

One is placed in the frame of a dimensional mono problem in Cartesian coordinates. The "structure" considered, is finally a segment length 1

1.2 **Boundary conditions and loadings**

One imposes a pressure varying linearly P in x=0 on 0 in x=1 : p(x)=P(1-x)

In x=0: the temperature is imposed null In x=1: the temperature is imposed on 1.

1.3 **Initial conditions**

T(x)=0 everywhere One is interested in the permanent mode Titre: WTNL102 - Problème mono dimensionnel de convection[...]
Responsable: Sylvie GRANET

Date: 04/08/2011 Page: 3/5 Clé: V7.30.102 Révision: 6802

2 Reference solution

2.1 Method of calculating

One leaves the equation of energy [éq 3.1.3-1] the document [R7.01.11], which in this case gives:

$$h\dot{m} + \dot{Q}' + Div(h\mathbf{M}) + Div(\mathbf{q}) = 0$$

In which h the enthalpy of water, its \mathbf{M} mass flux indicates, m the mass water contribution and \mathbf{q} heat flux.

Taking into account the made assumptions, one sees easily that:

$$\mathbf{M} = M_{x} = \rho_{w} \lambda_{h} P$$

$$h = C_w^p T$$

$$\mathbf{q} = q_x = -\lambda_T \frac{\partial T}{\partial r}$$

$$\dot{Q}' = \rho_{w} C_{w}^{p} \dot{T}$$

 $\lambda_{\scriptscriptstyle T}$ is the thermal coefficient of diffusion process, $\lambda_{\scriptscriptstyle h} = \frac{K_{\scriptscriptstyle \rm int}}{\mu_{\scriptscriptstyle w}}$ is the hydraulic coefficient of diffusion,

 $K_{\rm int}$ the intrinsic permeability $\rho_{\scriptscriptstyle W}$ $\mu_{\scriptscriptstyle W}$, $C_{\scriptscriptstyle W}^{\scriptscriptstyle p}$ are respectively the density, viscosity and calorific heat with constant pressure of water.

While deferring [éq 2.1-2], [éq 2.1-3], [éq 2.1-4] and [éq 2.1-5] in [éq 2.1-1] one finds:

$$\frac{\rho_{w}C_{w}^{p}}{\lambda_{T}}\dot{T} + \rho_{w}C_{w}^{p}\frac{\lambda_{h}}{\lambda_{T}}P\frac{\partial T}{\partial x} - \frac{\partial^{2}T}{\partial x^{2}} = 0$$

One poses:

$$R = \rho_{w} C_{w}^{p} \frac{\lambda_{h}}{\lambda_{m}} P$$

and

$$S = \frac{\rho_w C_w^p}{\lambda_T}$$

One obtains

$$S\dot{T} + R\frac{\partial T}{\partial x} - \frac{\partial^2 T}{\partial x^2} = 0$$

2.2 Results of reference

In order to obtain the permanent mode more quickly, one chooses coefficients such as:

$$\frac{S}{R} = \frac{1}{\lambda_{r}P} << 1$$

The solution of [éq 2.1-7] is then:

$$T = \frac{e^{Rx} - 1}{e^R - 1}$$

Titre: WTNL102 - Problème mono dimensionnel de convection[...]

Date: 04/08/2011 Page: 4/5 Responsable: Sylvie GRANET Clé: V7.30.102 Révision: 6802

Modelization A

3.1 Characteristic of the modelization A

One makes a modelization with 500 elements, each element thus has a length $h = \frac{1}{500}$.

The coefficients are chosen:

$$ho_{w}$$
 1
 C_{w}^{p} 1
 μ_{w} 1
 K_{int} 100
 λ_{T} 10

These values lead to a number of Peclet R = 10 and a Peclet number local $Rh = \frac{1}{50}$.

3.2 Results

X	Reference temperature	Temperature Aster	relative Error ($\%$)
6,00E-01	0,0182710686	0,0182567	0,079%
7,00E-01	0,0497439270	0,0497269	0,034%
8,00E-01	0,1352960260	0,1352760	0,015%
9,00E-01	0,3678507400	0,3678309	0,005%
1.00E+00	1.000000000	1.0000000	0.0%

Révision: 6802

Code Aster

Titre: WTNL102 - Problème mono dimensionnel de convection[...]

Date: 04/08/2011 Page: 5/5 Responsable: Sylvie GRANET Clé: V7.30.102

Summary of the results 4

a good agreement is obtained between the temperatures calculated by Code_Aster and the values of reference.