Titre: TTLP302 - Transfert thermique dans un domaine Plan[...]

Date: 03/02/2011 Page: 1/5 Responsable : Jessica HAELEWYN Clé: V4.23.302 Révision: 5489

TTLP302 - Heat transfer in a Plane field with geometrical singularity

Abstract:

This test is resulting from the validation independent of version 3 in linear transient thermal.

It is about a plane 2D problem represented by two modelizations, one planes, the other voluminal one.

The features tested are the following ones:

- plane thermal element,
- voluminal thermal element,
- algorithm of transient thermal,
- geometrical singularity,
- •limiting conditions: imposed temperature.

The interest of the test, besides the fact that it is an industrial case, lies in the taking into account of a geometrical singularity in transitory thermal analysis.

Titre: TTLP302 - Transfert thermique dans un domaine Plan[...]

Date: 03/02/2011 Page: 2/5 Responsable: Jessica HAELEWYN Clé: V4.23.302 Révision: 5489

Problem of reference

Geometry

1.2 **Properties of the thermal**

material Conductivity $\lambda = 1. W/m \circ C$ voluminal Heat $\rho C_P = 1.J/m3 \circ C$

Boundary conditions and loadings 1.3

- [AJ] imposed temperature $T = 1000 \,^{\circ} C$,
- [FG] imposed temperature $T=0 \,^{\circ}C$,
- others with dimensions $\varphi = 0$.

Initial conditions 1.4

$$T(x, y, 0) = erfc\left(\frac{x}{2\sqrt{t}}\right)$$
 for $t = 0.0005 s$

Titre: TTLP302 - Transfert thermique dans un domaine Plan[...]
Responsable: Jessica HAELEWYN

Date: 03/02/2011 Page: 3/5 Clé: V4.23.302 Révision: 5489

2 Reference solution

2.1 Method of calculating used for the reference solution

the reference solution is a numerical solution obtained by the finite element method [bib2] quoted in the reference [bib1]. This solution is based on a network of 168 square elements of $0.05 \, \mathrm{m}$ dimensioned, with 200 time step ($\Delta \, t = 0.0005 \, \mathrm{s}$).

2.2 Results of reference

Temperature to the points BCDEH and I time t=0.1s

2.3 Uncertainty on the Unknown

solution.

2.4 Bibliographical references

- J.C. Bruch Jr., G. Zyroloski, "Transient two-dimensional heat conduction problems solved by the finite element method", *Int. J. num. Meth. Engng,* flight 8, n°3, pp 481-494, 1974.
- •G.E. Beautiful, "A method for treating boundary singularities in time-dependant problems" TR/8, Dept. of Math., Brunel Univ. Uxbridge, Middlesex, 19 pp., 1972.

Titre: TTLP302 - Transfert thermique dans un domaine Plan[...]

Date: 03/02/2011 Page: 4/5 Responsable: Jessica HAELEWYN Clé: V4.23.302 Révision: 5489

Modelization A 3

3.1 Characteristic of the modelization

PLANE (QUAD4)

Conditions limites:

- coté AJ: T = 1000°C
- $0^{\circ}\mathrm{C}$ - coté FG: T =
- cotés AB, BC, CD,

DE, EF, GJ

3.2 Characteristic of the mesh

Many nodes:

Number of meshes and types: **60** QUAD4

3.3 Remarks

the discretization in time step are the following one:

10 steps for [0., 1.D-4]either $\Delta t = 1.D - 5$

9 steps for [1.D-4, 1.D-3] $\Delta t = 1.D - 4$

9 steps for [1.D-3, 1.D-2]or $\Delta t = 1.D - 3$

9 steps for [1.D-2, 1.D-1]or $\Delta t = 1.D - 2$

Quantities tested and Standard 3.4

Identification	results of Reference	Reference	Tolerance
Temperature ($^{\circ}C$)			
t = 0.1 s			
Points			
B(N37)	SOURCE_EXTERNE	787.	2%
C(N39)	SOURCE_EXTERNE	634.	2%
D(N61)	SOURCE_EXTERNE	86.	2%
E(N59)	SOURCE_EXTERNE	28.	2%
H(N64)	SOURCE_EXTERNE	119.	2%
I(N42)	SOURCE_EXTERNE	538.	2%

Révision: 5489

Date: 03/02/2011 Page: 5/5

Clé: V4.23.302

Code Aster

Titre: TTLP302 - Transfert thermique dans un domaine Plan[...]

Responsable : Jessica HAELEWYN

4 Summary of the results

The modelization carried out (PLANE with meshes QUAD4) give satisfactory results. The maximum change is of -0.73%, and it is located on the smallest value of reference.

The taking into account of the initial condition of the type $erfc\left(\frac{x}{2\sqrt{t}}\right)$ was carried out correctly. It required use of the command CREA_CHAMP making it possible to define an initial field of temperature of each node of the model.