

Date: 17/10/2011 Page: 1/9

Titre: SSLV315 - Propagation non plane d'une fis[...]

Responsable : Samuel GENIAUT Clé : V3.04.315 Révision : 7508

# SSLV315 – nonplane Propagation of a crack emerging with X-FEM

#### Summarized:

The goal of this test is to compare the methods of propagation SIMPLEXE, MAILLAGE, UPWIND and GEOMETRIQUE of operator PROPA\_FISS for a crack 3D requested in mixed mode.

Titre: SSLV315 - Propagation non plane d'une fis[...]

Date: 17/10/2011 Page: 2/9 Responsable: Samuel GENIAUT Clé: V3.04.315 Révision: 7508

## **Problem of reference**

#### 1.1 Geometry



Appears 1.1-a: geometry of the fissured plate

geometrical Dimensions of the fissured plate:

width L=8 mthickness E=1 mheight H=18 m

the crack is initially directed with  $45^{\circ}$ , the front being initially positioned in (x, 2, 9).

Titre : SSLV315 - Propagation non plane d'une fis[...]

Date : 17/10/2011 Page : 3/9

Responsable : Samuel GENIAUT

Clé : V3.04.315 Révision : 7508

## 1.2 Properties of the material

Young's modulus E = 205000 MPaPoisson's ratio v = 0.3

## 1.3 Boundary conditions and loadings

Boundary conditions:

Point:  $P \Delta X = \Delta Y = \Delta Z = 0$ 

Points on the segment  $AB: \Delta X = \Delta Z = 0$ 

Points on surface  $INF: \Delta Z = 0$ 

Loading:

Pressure on surface SUP: P = -1 MPa

## 2 Reference solution

the results of the modelization B (method Mesh) are taken as reference.

For the modelization B and C, one checks non regression code compared to the position of the crack tip.

For the modelizations A, D and E, one checks that the nodes closest to the trace of the crack tip on the plane (1, v, z) at the last time of propagation have their level-set very close to zero.

| Time of propagation | Node  | Coordinated $y_i$ | Coordinated $Z_i$ |
|---------------------|-------|-------------------|-------------------|
|                     | N219  | 3.14              | 9.00              |
|                     | N1576 | 2.57              | 8.70              |
| 3                   | N1577 | 2.86              | 8.70              |
|                     | N2636 | 2.57              | 9.30              |
|                     | N2637 | 2.86              | 9.30              |

These nodes are those included in a radius of capture being worth the backbone of an element, centered on the trail of crack tip on the plane (1, x, y).

One B identifies these nodes in the message file .mess () of the modelization and one estimates the value of their level-sets in the modelizations A, D and E.

Titre: SSLV315 - Propagation non plane d'une fis[...]

Date: 17/10/2011 Page: 4/9 Responsable: Samuel GENIAUT Clé: V3.04.315 Révision: 7508

#### Modelization A 3

#### 3.1 Characteristic of the modelization

method SIMPLEXE is used by PROPA FISS.

#### 3.2 Characteristics of the mesh

the structure is modelled by a mesh made up of 6720 elements HEXA8 (see Appear 3.2-a).



Appear 3.2-a: mesh of structure

The mesh is not very refined to reduce the computing time. The size of the elements is uniform and equal to  $0.29 \times 0.33 \times 0.25 m$ .

#### 3.3 Quantities tested and results

One extracts the level set norm ( LSN ) and tangent ( LST ) by means of operator POST RELEVE T and one checks that the values maximum and minimal remain understood in the circle of capture of the nodes tested around the crack front, that is to say 2/3:

| Propag. i | $Max LSN_i$ | $Min\ LSN_i$ | $Max LST_i$ | $Min LST_i$ |
|-----------|-------------|--------------|-------------|-------------|
| the 3     | 0.257       | 0.333        | 0.243       | 0.404       |

got results show well that the level-sets remain lower than the radius in which the crack front was localised. That means that the crack tip was correctly located by method SIMPLEXE.

Titre: SSLV315 - Propagation non plane d'une fis[...]

Date: 17/10/2011 Page: 5/9 Responsable: Samuel GENIAUT Clé: V3.04.315 Révision: 7508

#### **Modelization B** 4

#### 4.1 Characteristic of the modelization

the method MAILLAGE is used by PROPA FISS. Option CALC  $\,\,\mathrm{K}\,\,$  G is used by CALC  $\,\,\mathrm{G}.$ 

#### Characteristics of the mesh 4.2

One uses the same mesh as for modelization A.

#### 4.3 **Grandeurs tested and results**

One tests, into non regression, the position of the crack tip to the last iteration of propagation.

| Time of Coordinated | ne of Coordinated Coordinated $y_i$ propagation $z_i$ |   |
|---------------------|-------------------------------------------------------|---|
| 3.2.8               |                                                       | 9 |

Version default

Titre: SSLV315 - Propagation non plane d'une fis[...]

Date: 17/10/2011 Page: 6/9 Responsable: Samuel GENIAUT Clé: V3.04.315 Révision: 7508

#### **Modelization C** 5

#### 5.1 Characteristic of the modelization

the method MAILLAGE is used by PROPA FISS. Option POST K1 K2 K3 is used by CALC G.

#### Characteristics of the mesh 5.2

One uses the same mesh as for modelization A.

#### 5.3 **Grandeurs tested and results**

One tests, into non regression, the position of the crack tip to the last iteration of propagation.

| Time of propagation | Coordinated $y_i$ | Coordinated $z_i$ |
|---------------------|-------------------|-------------------|
| 3.2.8               |                   | 9                 |

Titre : SSLV315 - Propagation non plane d'une fis[...] Date : 17/10/2011 Page : 7/9
Responsable : Samuel GENIAUT Clé : V3.04.315 Révision : 7508

## 6 Modelization D

## 6.1 Characteristic of the modelization

method UPWIND without auxiliary grid is used by PROPA FISS.

## 6.2 Characteristics of the mesh

One uses the same mesh as that of modelization A.

## 6.3 Grandeurs tested and results

One extracts the level set norm ( LSN ) and tangent ( LST ) by means of operator POST\_RELEVE\_T and one checks that the values maximum and minimal remain understood in the circle of capture of the nodes tested around the crack front, that is to say 2/3:

| Propag.i | $Max LSN_i$ | $Min LSN_i$ | $Max LST_i$ | Min LST <sub>i</sub> |
|----------|-------------|-------------|-------------|----------------------|
| the 3    | 0.268       | 0.336       | 0.341       | 0.235                |

got results show well that the level-sets remain lower than the radius in which the crack front was localised. That means that the crack tip was correctly located by method <code>UPWIND</code>.

Version default

Titre: SSLV315 - Propagation non plane d'une fis[...]

Date: 17/10/2011 Page: 8/9 Responsable: Samuel GENIAUT Clé: V3.04.315 Révision: 7508

## Modelization E

#### 7.1 Characteristic of the modelization

method GEOMETRIQUE is used by PROPA FISS.

#### 7.2 Characteristics of the mesh

One uses the same mesh as that of modelization A.

#### 7.3 **Grandeurs tested and results**

One extracts the level set norm ( LSN ) and tangent ( LST ) by means of operator POST RELEVE T and one checks that the values maximum and minimal remain understood in the circle of capture of the nodes tested around the crack front, that is to say 2/3:

| Propag. i | $Max LSN_i$ | $Min\ LSN_i$ | $Max LST_i$ | $Min LST_i$ |
|-----------|-------------|--------------|-------------|-------------|
| the 3     | 0.235       | 0.397        | 0.333       | 0.272       |

got results show well that the level-sets remain lower than the radius in which the crack front was localised. That means that the crack tip was correctly located by method GEOMETRIQUE.

Version default

Titre: SSLV315 - Propagation non plane d'une fis[...] Date: 17/10/2011 Page: 9/9

Responsable : Samuel GENIAUT Clé : V3.04.315 Révision : 7508

# 8 Summary of the results

All the methods of propagation used (SIMPLEXE, MAILLAGE, UPWIND and GEOMETRIQUE) of operator PROPA\_FISS made it possible to calculate the position of a crack well propagating in mixed mode in a structure 3D.