Titre : SSLL403 - Flambement d'une poutre sous l'effet de [...]
Responsable : Jean-Luc FLÉJOU

nt d'une poutre sous l'effet de [...] Date : 01/08/2011 Page : 1/5
IOU Clé : V3.01.403 Révision : 6855

SSLL403 - Buckling of a beam under the effect of its Summarized

inertia loading:

This test makes it possible to validate in linear elasticity the loading due to the forces of gravity for a modelization of type straight beam of Eulerian (POU_D_E). It also allows the implementation and the validation of the computation of the geometrical stiffness matrix.

The reference solution is analytical and the results considered to be satisfactory.

Titre : SSLL403 - Flambement d'une poutre sous l'effet de [...]

Responsable : Jean-Luc FLÉJOU

Date : 01/08/2011 Page : 2/5
Clé : V3.01.403 Révision : 6855

1 Problem of reference

1.1 Geometry

repère global

Appears 1.1-a: Vertical beam.

Rectangular section: $H_v = 0.01 \, m$, $H_z = 0.01 \, m$

Length: L=1 m

1.2 Properties of the materials

Modulus Young: $E = 2.10^{11} Pa$

Poisson's ratio: v=0,3

Density: $\rho = 7800 \, kg \, / \, m^3$

1.3 Boundary conditions and loading

Boundary condition:

Clamped end (0): DX = DY = DZ = DRX = DRY = DRZ = 0.

Loading:

Force gravity: p weight per unit of length with g = (0, 0, -9.81) (given in total reference).

Révision: 6855

Date: 01/08/2011 Page: 3/5

Clé: V3.01.403

Titre : SSLL403 - Flambement d'une poutre sous l'effet de [...]

Responsable : Jean-Luc FLÉJOU

Reference solutions

2.1 Method of calculating used for the reference solutions

In local coordinate system, x along the axis OA of the beam, the bending moment, with the X-coordinate x, has as a statement:

$$M_{F_{v}}(x) = p \int_{x}^{L} [v(\xi) - v(x)] d\xi$$
.

The deflection v(x) satisfied thus the equation:

$$E I_{z} = \frac{d^{2} v}{dx^{2}} = p \int_{x}^{L} \left[v(\xi) - v(x) \right] d\xi = -p \left[\int_{x}^{L} v(\xi) d\xi + (L - x) v(x) \right]$$

By deriving the two members, one obtains the differential equation:

$$\frac{d^3v}{dx^3} + \frac{p}{E I_z} (L - x) \frac{dv}{dx} = 0$$

The function $v'(x) = \frac{dv}{dx}$ satisfies the linear and homogeneous differential equation with the second order:

$$\frac{d^{2v}}{dx^{2}} + \frac{p}{E I_{z}} (L - x) v' = 0,$$

which can be solved using the functions of Bessel. One finds the value of the linear weight then criticizes equalizes with:

$$p_c = 7,837 \frac{E I_z}{L^3}$$
.

The analytical solution gives numerically:

$$p_c = 7,837 \ 2 \ 10^{11} \cdot \frac{10^{-8}}{12} = 1,3061667 \ 10^3$$
.

2.2 Results of reference

the value criticizes multiplier $~\lambda~:~\lambda_c = \frac{P_c}{\rho\,S\,g}$

2.3 Uncertainty on the analytical

solution Solution.

2.4 Bibliographical references

[1] Ratio n° 2314/A of the Institute Aerotechnics "Proposal and realization for new cases tests missing to the validation of the beams *Aster*"

Version default

Titre : SSLL403 - Flambement d'une poutre sous l'effet de [...]

Date : 01/08/2011 Page : 4/5

Responsable : Jean-Luc FLÉJOU Clé : V3.01.403 Révision : 6855

3 Modelization A

3.1 Characteristic of the modelization

The model is composed of 10 elements straight beam of Eulerian.

3.2 Characteristics of the mesh

It consists of 10 elements POU D E.

3.3 Quantities tested and Eigenvalue

results of the system ($K + \lambda K_G$) X = 0 :

	Reference	Aster	Variation %
λ	– 170.701	- 170.0005	- 0.408

3.4 Remark

Since $p_c = \lambda \rho S g$, ($\rho S g$ represents linear prestressing), we have like critical loading: $p_c = 1300,84 \, N.m^{-1}$.

Révision: 6855

Date: 01/08/2011 Page: 5/5

Clé: V3.01.403

Titre : SSLL403 - Flambement d'une poutre sous l'effet de [...]

Responsable : Jean-Luc FLÉJOU

4 Summary of the results

the results are very close to the analytical solution (variation: 0,4% for 10 elements). This variation is function of the smoothness of discretization being given the assumptions used for the geometrical stiffness (cf [R3.08.01]). This thus validates this kind of loading for the buckling of Eulerian.