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Criteria of structural stability 

Summarized:

This document presents the various criteria of  stability,  with the meaning buckling of  structure, available in 
Code_Aster. One can classify them according to two categories:

•criterion of Eulerian on linearized problem, 
•nonlinear criteria.

These criteria make it possible to detect the loss of unicity in solution of the quasistatic problem.
They are directly applicable to the frame of the dynamics, but as they take account neither of the mass matrix 
nor of that of damping, one cannot speak about dynamic criterion of stability  to the classical  meaning (for 
example, of negative or null damping becoming).

The nonlinear choice of criteria fulfills the requirements of:

• versatility  (general  method for any behavior  model and being able to accept  any strain tensor 
available in the code), 

• minimization of cost CPU and the additional obstruction memory.

The criterion presented is a generalization of the criterion of Eulerian, based on the analysis of the reactualized 
total  stiffness matrix.  It  is  called within operators  STAT_NON_LINE and  DYNA_NON_LINE,  to be able to be 
evaluated with each step of the nonlinear dynamic resolution incremental quasi-static or transitory.
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1 Introduction

Code_Aster allows the search of buckling modes linear, qualified method of Eulerian. It is enough to 
solve  a  problem  generalized  with  the  eigenvalues  (thanks  to  operator  MODE_ITER_INV or 
MODE_ITER_SIMULT and key word  TYPE_RESU=' MODE_FLAMB'). The two matrixes arguments of 
the generalized problem are the stiffness matrix and the geometrical stiffness matrix, resulting from a 
linear elastic preliminary computation (operator MECA_STATIQUE).

In all  the cases where one cannot neglect nonthe linearities, which they, the approach Eulerian is 
geometrical or behavioral is not more valid.

We thus propose an ad hoc criterion, that one can regard as a generalization of the criterion of Eulerian 
on reactualized configuration. This criterion is built on the assembled tangent stiffness matrix, which is 
calculated in the algorithm of the Newton type to solve the nonlinear quasi-static problems (operator 
STAT_NON_LINE) or nonlinear transient dynamics (operator DYNA_NON_LINE).

This criterion, in nonlinear, makes it possible to treat the nonlinear elastic behavior models rigorously. 
On the other hand, the models which present a dissipative aspect are treated rigorously only if the 
loading, in any point of structure, follows a monotonous evolution (that corresponds to the assumption 
of Hill [bib4]).

2 Study of the stability of a structure

2.1 general Notion of buckling

buckling is a phenomenon of instability [bib6]. Its appearance can be observed in particular on slender 
elements of low flexural stiffness. Beyond of a certain level  of loading, the structure undergoes an 
important change of configuration (which can appear by the sudden appearance of undulations, for 
example).
One distinguishes two types of buckling: buckling by bifurcation and buckling by boundary point ([bib1], 
[bib7], [bib8]). To describe the behavior of these two types of buckling, one considers a structure of 
which the parameter   is characteristic of the loading and of which the parameter   is characteristic 
of displacement.

 

Figure 2.1-2.1-a2.1-a : Buckling by bifurcation
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Between the point O  and the point A , the structure admits only one family of curve  , , it can, 
for example to act of classical linear elasticity or of elastoplasticity, where if the problem is well posed 
(cf [§2.22.2]), there is result classical existence and of unicity of the solution.
On the other hand, beyond the point  A , several families of curves are solution of the problem of 
equilibrium.  This  loss  of  unicity  is  accompanied  by  an  instability  of  the  initial  branch  (known  as 
fundamental). The secondary branch can be stable (curved AB ) or unstable (curve AB ’ ). The load 

beyond which there is bifurcation calls the critical load cr .
Buckling by bifurcation is  characterized by the fact that  the mode (or direction of  buckling),  which 
initiates the secondary branch,  does not  generate additional  work in the loading applied:  mode of 
buckling being orthogonal to him.
An example of buckling per bifurcation with instability  of the secondary branch is in the case of a 
circular cylindrical  shell  under axial  compression [bib10].  Examples of buckling per bifurcation with 
stability  of the secondary branch are in elastic beams in axial  compression, circular rings in radial 
compression and rectangular plates in longitudinal compression.

 

Figure 2.1-2.1-b2.1-b : Buckling by boundary point

 

Appears 2.1-2.1-c2.1-c : Buckling by boundary point with breakdown
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On figures [Figure 2.1-2.1-b2.1-b] and [Appears 2.1-2.1-c2.1-c], which illustrates buckling by boundary 
point, the structure does not admit that only one family  ,  solution of the balance equations. At 
the point A , there is loss of stability of the solution with total loss of stiffness in the case of the figure 
[Figure  2.1-2.1-b2.1-b]  and  with  a  phenomenon  of  breakdown  in  the  case  of  the  figure  [Appears
2.1-2.1-c2.1-c]  (the solution becomes again stable after a discontinuity of  displacement;  case of  a 
segment of a sphere under external pressure). The point A  is then called boundary point.

The problem thus amounts in all the cases seeking the load from which the fundamental branch of 
equilibrium becomes unstable or of dubious stability. That generally mobilizes large displacements.
One can finally have the case of failure by yielding which is connected at the boundary point [Figure 
2.1-b].

2.2 Writing of the mechanical problem

This chapter aims to introduce the general formalism of structural analysis adapted to the nonlinear 
mechanical problem which we wish to tackle.
To start,  we thus briefly will  point  out  the setting in equation of a problem type of computation of 
structure.  To simplify,  we place ourselves,  all  at  least  at  the beginning,  in the frame of  the small 
disturbances.

 

Appear 2.2-2.2-a2.2-a : Representation of a problem of structural analysis

the structure  S  is subjected to imposed voluminal forces  f d , surface forces Fd  on edge  ∂S 2  

and of the displacements imposed U d  on the rest of edge of S , noted ∂S 1 .
The unknowns of the problem of reference on solid are the field of displacement u  and the stress field 
of Cauchy  . The solution ( u , ) of the problem structure where the heating effects are neglected 
defines as:

To find u ,∈H1S ×L
2
S  which checks:

•Equations of connections:
u ∣∂S 1

=Ud éq 2.2 -1

•Behavior model:
 = f    with   which is the tensor of déformationéq  2.2 -2

 =
1
2
∇ u+∇ uT  in assumption small perturbationséq  2.2 - 3

If one supposes a linear elastic behavior

     =C :  éq 2.2 - 4
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•Balance equations:

{  =∇ . + f d avec =
d2u

d t2

 .n∣∂S 2
= Fd

éq 2.2 - 5

2.3 Study of stability of the system

the object of this chapter is to present the methods making it possible to determine the stability of the 
nonlinear  quasi-static  equilibrium  of  a  structure.  To  start,  we  are  interested  only  in  detection  of 
instability, or more exactly in the loss of unicity of the solution [bib6]. Among recent works of synthesis, 
one can quote [bib9] or [bib7] and [bib8] which present very complete papers on the nonlinear analysis 
of stability of structures.
The computation of the post-critical solution will not be approached.

To analyze stability,  we introduce an initial configuration of reference S 0 ,  a present configuration 

S  and a disturbed configuration S 1 :
 

Appears 2.3-2.3-a2.3-a : Definition of the various configurations
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Is  u  the field of displacement of the points of structure. The behavior is supposed, for the moment, 
linear  elastic  isotropic.  The structure  subjected to  imposed displacements  and forces will  become 
deformed and become the structure located by the present configuration S . We seek to determine a 

state of equilibrium characterized by the field of displacement between the initial configuration  S 0  

and the current configuration S , as well as a stress field of Cauchy, noted  , or of Piola-Kirchhoff 

II, noted  :

=detF .F -1I with {
F=∇ u+ I : tenseur gradient de la transformation

det F=
0


I : tenseur de Piola - Kirchhoff I

⇒=
0


.F -1 . .F- T  

éq 2.3 -3

In this statement, one sees appearing the relationship between the initial density 0  and the current 

density  .
The following stage is the prediction of the stability of this equilibrium.

To this end, we will seek a criterion allowing to determine if there exists only one field of displacement 
balancing the forces applied. We will suppose that the forces increase gradually and we will seek to 
find from which moment there exist two configurations S  and S 1  who respect the equations of 
problem: we seek a bifurcation point, it is - with-to say a loss of unicity of the solution. This time will be 
described as time of buckling.

2.3.1 Writing of the elastic geometrical nonlinear problem

the solution u ,  of the problem structure without heating effects checks ([bib1], [bib7], [bib2]):

•Equations of connections:
u ∣∂S 0

=Ud éq 2.3.1-1

•elastic Behavior model:

 =,  éq 2.3.1-2

with   which is the strain tensor. If a linear elastic behavior is supposed:
 

 =C  éq 2.3.1-3
•Balance equations:

{=∇ . + f d avec  =
d2u

d t 2

F . .n0∣∂S 0
=Fd

éq 2.3.1-4
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the associated strain tensor is that of Green-Lagrange (referred with the initial configuration):

 

u=
1
2
FT F -I  avecF=∇ u+ I

⇒u=Lu+
1
2

Q
u ,u

          

with: { 
L
u=

1
2
∇ u+∇

T u: partie linéaire 


Q
u ,u=∇

T u .∇ u : partie quadratique
                                            éq 2.3.1-5

We can now write the Principle of virtual power in geometrical nonlinear elasticity and quasi-static:

p intal int - pext = 0,∀u*C A 0           

Avec :{pint =∫
S 0

Tr  
*
d=∫

S 0

Tr [ Lu+ 1
2

Q
u ,uCL

u*+Qu ,u*]d 

pext = ∫
∂S 0

Fd .u*dS +∫
S 0

f d .u*d 

éq 2.3.1-6

In order to obtain a discretized formulation, one can rewrite the strain tensor:

{u=[BL+
1
2
BNL u] .u

=Cuavecqui est le tenseur de Piola - Kirchhoff II

éq 2.3.1-7

the power of the internal forces becomes:

P int=∫
S O

Tr [ .[BL+BNL u]T u* ] d éq 2.3.1-8

By taking account of the behavior model [éq 2.3.1-3]:

P int=∫
S 0

Tr [ [BL+
1
2
BNLu]

T

C[BL+BNL u]u.u*] d éq 2.3.1-9

After discretization by the finite elements, one can put this equation in matric form:

u* .[K 0+KL
u+KQ

u] .u= Pext éq 2.3.1-10

the matrix  KL  is symmetric and there are the following statements:

{
K0=∫

 S 0

BL
T

CBL d 

KL =∫
 S 0

[ 1
2
BNL

uTCBL +BLT

CBL
u ]d 

KQ =
1
2 ∫ S 0

BNLuTCBNLd 

éq 2.3.1-11
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One obtains directly what precedes the writing in matric form by the equilibrium:

[K0+KL
u+KQ

u] .u=F ext éq 2.3.1-12

Is still, in an equivalent way:

F int= Fext avec F int=∫
S 0

[BL+BNL u]td OMEGA éq 2.3.1-13

We can just as easily formulate the Principle of virtual power from the stress state of Cauchy and the 
strain tensor of Almansi (thus on the current configuration). One obtains then:

∫
S

Tr  u*d = ∫
∂S

Fd .u*dS +∫
S

f d .u*d éq 2.3.1-14

That one can also put in the form, after discretization:

∫
S

BT d= Fint =Fext

éq 2.3.1-15

Is still, by supposing the elastic behavior model:

K u=F ext avecK=∫
S

BTCBd  éq the 2.3.1-16

integrals of these equations are calculated on the volume running S  which depends, of course, of 

the field of solution displacement  u . In the same way, the operator  B  must be calculated on the 

present configuration S  and not on the initial configuration S 0 , as it was the case previously.

2.3.2 Study of stability in nonlinear geometrical

One will seek if there exists a second kinematically admissible field of displacement which checks the 
balance equations: one thus seeks to know if there will be bifurcation.

This second field will be written as the sum of a disturbance added to the first solution, is: u=u1 , 

with   which is a very small reality and that one will make tend towards 0. The field u1  is selected 
kinematically admissible to 0.

The Principle of virtual power will be then written for this new field.

The strain field is put in the form:

u+u1=u+[ Lu1+ 1
2

Q
u1 ,u]+ 

2

2

q
u1 ,u1 éq the 2.3.2-1

virtual strains are given by:

1
*= 

L
u*+qu ,u*+Q u1 ,u

*
=u*+ 

Q
u1 ,u éq 2.3.2-2

In the same way, if we choose S0  like reference configuration, the stresses become:

1=+ C[ Lu1+ 1
2

Q
u ,u1+

Q
u1 ,u]+ 

2

2
C 

Q
u1 ,u1 éq 2.3.2-3
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We can now express the Principle of virtual power for the field disturbed displacement. Let us take as 
assumptions that the imposed forces do not depend on displacement and that the initial configuration is 
selected like reference.

{
P1

int = P int

+ [∫ S0

Tr  
Q
u1 ,u*d+∫

 S0

Tr [ u*C Lu1+1
2


Q
u ,u1+ 

Q
u1 ,u]d ]+ o

P1
ext = Pext

P1
int - P1

ext = 0

éq 2.3.2-4

For   sufficiently small, it will be enough that the term proportional to   in the statement [éq 2.3.2-4] 

is null so that the Principle of virtual power is checked for the field u=u1 . In this case, there will not 
be thus more unicity of the solution, which will translate the loss of stability of the system.

When the imposed forces do not depend on the geometrical configuration, the study of stability is thus 
stated like:

Knowing the actual position, i.e the kinematically admissible field of displacement u  and the stress 

field,  if there exists a kinematically admissible field of displacement u1  with 0 and such as, for any 

kinematically admissible displacement u*  with 0, one has: éq

∫
S0

Tr  
Q
u1 ,u*d

+∫
S0

Tr [ Lu*CL u1+ 
Q
u ,u*C L

u1+
L
u*CQu ,u1+

Q
u ,u*CQu ,u1 ]d

= 0
2.3.2-5 Then

the problem considered is unstable. One

can  express  this  condition  of  bifurcation  in  matric  form by introducing,  moreover,  the  geometrical 
stiffness matrix which K   discretizes the first term of it: éq

∀ u*CA 0,u*TKt u1=0

Avec KT =K 0 +K L
u+KQ

u+K  qui est la raideur tangente 
2.3.2-6 If

one writes the condition of bifurcation on the current configuration, OMEGaS then one a: éq

∀ u*CA 0,u*T [K + K  ]u1= 0 2.3.2-7

the stress to be considered is then the stress of Cauchy and all the integrals are evaluated on the 
current field. S Stability condition

2.3.2.1 of a nonlinear elastic equilibrium It

comes immediately,  that if  there exists a state such that the above definite tangent  KT  matrix is 

singular, we will  have displayed well  a field of non-zero displacement  u1  which shows the loss of 
unicity of the solution of the mechanical problem. This field of displacement is the mode of buckling. 
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One can notice that the condition of bifurcation is well checked, whatever the norm and the sign of: u1  

in this meaning, one thus speaks about mode of buckling, like direction, because one limited oneself in 
[éq 2.3.2-4] to the first order in.  Case

2.3.2.2 of small displacements: charge with Eulerian When

displacements can be qualified the small ones before buckling, one can confuse the initial configuration 
with the current geometry. The matrixes and K L  can KQ  then be neglected. Moreover, the stress 

can   be confused with the usual stress;   the equations of buckling are written then: éq
[K0 +K  ]u1= 0 2.3.2.2 - 1 It

is appropriate to notice that the matrix is K   proportional to and   thus to the loading applied to 
structure. If one multiplies the stress by,  one obtains: éq

( )[ ] 010 =+ uKK σλ [K0 + K ]u1 = 0 2.3.2.2 - 2 This

equation immediately makes think of a problem generalized with the eigenvalues, of the same type as 
in the case of the search of the modes of vibration, which is written: éq

[K0 -2M] v1= 0 2.3.2.2 - 3

the matrix K   is replaced by the mass matrix, M and one sees appearing the own pulsation, 
whereas is v1  the associated mode of vibration. If

one wishes to study buckling under loading of which only a part is  controlled (variable part of the 
loading),  by a principle of  superposition,  the contribution,  constant,  loading not  controlled must  be 
added at the end and K 0  only the stress generated by the loading controlled will be in the term in. 
Formally, the following problem is thus posed: éq

[K0 +K cte +K  var]u1           

Avec :{ cte  : contrainte générée par le chargement non piloté 
 var : contrainte générée par le chargement piloté

2.3.2.2 - the 4

two stress fields are obtained by resolution of two linear problems, one for the loading not controlled, 
the other for the controlled part of the total loading (cf [U 2.08.04] and [bib17]). Case

2.3.2.3 of the imposed forces geometry dependant Example

of the following pressures: When
the external  forces depend on the configuration,  that  involves that  the work of  the external  forces 
intervenes under the stability condition. Let us take the example of a pressure applied on the structure. 
This pressure will be supposed to be constant during buckling: in other words, the value of pressure 
does not change during displacement. This
assumption corresponds to two types of real problems. The first type is that where the volume of the 
fluid imposing the pressure on the structure is very large in front of the variations of volume generated 
by the displacement of solid. The internal problems of pressure tanks where displacements of walls are 
considerable compared to dimensions of structure itself thus do not return in this frame. 
The second case corresponds to the existence of a source of fluid which makes it possible to keep the 
pressure with a constant value. It is not then necessary any more to worry about the amplitude of the 
displacement of solid. 
The value of pressure being taken fixes, the variation of the norm in the course of time are to be taken 
into account. This variation is due to the field of displacement which modifies the surface of structure. 
In the same way, if one reasons in terms of resultant and thus of integral, the surface element can also 
change area. Consequently, the resultant of the compressive forces will vary and it is advisable to take 
account of it. We
see quickly that the power of the forces, expressed on the present configuration, associated with a 
pressure is given by the following equation (see for example [bib11]): éq

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part  
and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)



Code_Aster Version 
default

Titre : Critères de stabilité structurale Date : 01/03/2012 Page : 12/23
Responsable : Nicolas GREFFET Clé : R7.05.01 Révision : 8585

P pression
ext = ∫

∂SP

p[ n+
dS1

dS
n1] .u*dS 2.3.2.3 - 1 In

this equation, we notice that the power of the external forces is modified in displacement. u1 We will 
have then: éq

P1
ext = Pext + ∫

∂SP

pn1 .u*dS1 2.3.2.3 - 2 Finally

, the matrix KT  is enriched by an additional term, function of the pressure: éq

K T =K 0 +K L
u+KQ

u+K +K  p 2.3.2.3 - 3 If

one writes the operators on the current geometry, one leads to: éq
KT =K +K +K  p 2.3.2.3 - 4 When

we are in the presence of follower forces of pressure, same methods that those presented previously 
will be able to apply the buckling loads to compute:: it will be enough to supplement the matrix with 
KT  the new term.  K p One can show that the matrix is  K  p  symmetric if  the compressive 

forces do not work on “edge” of the model. Vibrations

2.3.2.4 under prestressed

same  methodology  can  also  under  investigation  apply  vibrations  of  structure  in  the  current 
configuration.  S This structure is prestressed and deformed. It is enough to write the geometrical 
nonlinear  Principle  of  virtual  power [éq 2.3.1-6]  by taking account  of  the effects  of  inertia  and by 
injecting the assumption there that displacements are of the periodic functions of the type: éq

u1 t =v1 sin t  2.3.2.4 - 1 It
results from this: éq

[K0 +KL
u+KQ

u+K +K  p -2M] v1 = 0 2.3.2.4 - 2 First of all

, we notice, in this equation, that when we have a critical condition then the eigenfrequency of vibration 
of structure corresponding to the mode of buckling is null. Moreover
, we observe that the eigenfrequencies of structure charged are different from those of initial structure 
for two reasons: 
The own pulsation   is modified by prestressing formulates p  it is the principal effect which is used, 
for example, to grant a violin. The tension of the rope exploits the height of the corresponding note, 
therefore on its eigenfrequency. 
A second effect is  the variation of  the frequency by modification of  the geometry:  the geometrical 

starting  stiffness  matrix  0K  is  replaced  by  the  stiffness  matrix  on  the  current  geometry:  . 

K 0 +K L +KQ What causes to modify the vibratory equations. 

Operator  DYNA_NON_LINE  allows to  carry  out  vibratory  analyses  on  the  current  nonlinear 
configuration  (key  word  MODE_VIBR  ), but  without  taking  into  account  of  prestressing  for  time. 
Processing

2.3.2.5 of the elastoplastic behavior (plastic buckling) Far from

any exhaustiveness, we will present only the simplest approaches here, for their easy establishment in 
the code. When
the structure functions in an elastoplastic mode, buckling is affected by the loss of strength due to 
plasticity [bib2]. The modification comes from the behavior model during additional displacement. u1

The stress becomes, in incremental form: 2.3.2.5

1=+ CT [Lu+Q u ,u]+ 
2

2
CT Q u1 ,u1 - 1 In
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this  statement,  the  matrix  of  behavior  is  the  tangent  matrix.  CT The choice  of  this  matrix  is  not 

immediate:  indeed,  the  matrix  depends on and  u1  is  thus  not  known as  long as  the mode is 
unknown. One can, for example, to discharge during buckling if the mode develops in a meaning and 
to charge if it develops in the opposite meaning. It is thus necessary to make an assumption for the 
behavior during plastic buckling. To start, we will apply the assumption of Hill [bib4] who leaves the 
principle that the structure continues to plastically charge during buckling. Let us consider
an elastoplastic model of type Von Mises. We define the three moduli: who E  is the Young modulus, 
ET  the tangent modulus, and the secant modulus. These moduli are recalled on the following figure: E

 

Figure - has: Representation of the various moduli on a curve of tension 1D Then

we propose three possible methodologies. 
The assumption of the tangent modulus simply consists in replacing the Young modulus by the tangent 
modulus in the behavior model. One obtains then: 2.3.2.5

CT =
E
ET

C - 2 This

method is very rudimentary, but it is always pessimistic, which can constitute an advantage, if one 
places oneself from the point of view of the design. 

The method used usually consists in using the tangent matrix of incremental computation (operator 
STAT_NON_LINE [feeding-bottle 14]). We thus have the following equation in the case of the 
plasticity of Von Mises [bib15]: 2.3.2.5

CT =C[ I -
A [

D
⊗

DT
]AC

h+

D T

A A D

∥
D
∥VM

]           

Avec {

D : vecteur déviateur des contraintes 

A : matrice intervenant dans la norme de VonMises ∥D
∥VM =  DTA

D 

h :pente plastique définie par h=
E . ET

E - ET

- 3 This
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method is perfectly rigorous only in nonlinear elasticity or if the assumption of Hill is respected: it does 
not make it possible to predict the bifurcations in the ways of loading. As soon as the behavior model is 
dissipative,  the calculated critical  loads will  not  be exact  that  if  one can check that  the loading is 
monotonous, in any point of the structure (Hill [bib4]). 

The most realistic method consists in using the finished theory of the strain only to compute: the load of 
plastic buckling. The tangent matrix of behavior is given by the equation below: 2.3.2.5

CT = [ 1
ET

-
1
ES

A [
D
⊗

DT
]A

∥
D
∥VM

+C-1 +  1
ES

-
1
E A ]

- 1

- 4 Compared to

the method based on the tangent stiffness matrix [éq 2.3.2.5 - 3], this criterion requires the construction 
and  the  assembly  of  a  specific  total  matrix.  This  expensive  operation  comes to  weigh  down  the 
incremental resolution. For
considerations of generality and minimization of the development cost and cost of computation (CPU 
and  memory),  we  thus  choose  the  criterion  based  on  the  tangent  modulus  [éq  2.3.2.5  -  3]. 
Establishment

3 in the code In

any rigor, in order to make sure the analysis of stability of a nonlinear quasi-static computation, it is 
necessary to use the criterion of ad hoc stability to each step of incremental computation. Any criterion 
of nonlinear stability must thus be intrinsically the least expensive possible in TEMPS CPU and core 
memory. Speaking
Algorithmiquement, it appears judicious to establish the call to the criterion inside even of the routine 
corresponding to operator STAT_NON_LINE [feeding-bottle 14]. Indeed, the principle of call to 
each  step  puts  up  badly  with  a  completely  outsourced  operation  of  the  incremental  method  of 
resolution of the nonlinear mechanical problem. Criterion

3.1 of Eulerian This

criterion (cf [§ 2.3.2.2]) requires only the resolution of a linear static problem, then the construction and 
the assembly of the geometrical stiffness matrix. This one and the assembled stiffness matrix is then to 
pass like argument of a solver [bib12] for the problem to the eigenvalues [éq 2.3.2.2 - 2]. In

output one thus recovers buckling modes and the corresponding critical loads. For more details, the 
user will be able usefully to consult the document [U2.08.04] [bib17]. Nonlinear
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3.2 criterion Impact

3.2.1 on operator STAT_NON_LINE Let us start

by briefly pointing out the operation of the incremental method of resolution of the nonlinear structure 
problems [bib14]. Algorithm

3.2.1.1 of STAT_NON_LINE One

will use index I (like “time”) to note the number of an increment of load and exhibitor N (like “Newton”) 
to  note  the  number  of  the  iteration  of  Newton  in  progress.  The  algorithm  used  in  operator 
STAT_NON_LINE can then be written schematically in the following way: and

u0 ,0  known 0  Buckles

over times (or t i  increments of load): loading known Li =Lt i

• ui - 1 ,i -1  Prediction

• : computation of and ui
0  Buckles i

0

• on iterations of Newton: computation of a known continuation ui
n , i

n


• ui
n ,i

n
  and  ui

n , i
n
  Computation

• of the matrixes and vectors associated with the following loads Form
• of the behavior model computation

• of the stresses and i
n  local variables from i

n  the values and l -1  with  l -1  

the  preceding  equilibrium  ()  and t i -1  with  the  displacement  increment  since 

u i
n =u i

n -ui - 1  this equilibrium computation

• of the “nodal forces”: possible QT
i

n +BT
i
n

• computation of the tangent stiffness matrix: Computation K i
n =K ui

n


• of  the  direction  of  search  per  ui
n +1 ,i

n+1
  resolution  of  a  linear  system 

Iterations
• of linear search: Actualization 
• of the variables and their increments: Test

 {ui
n+1 = ui

n +  ui
n+ 1

 i
n+ 1= i

n + i
n+ 1 et {u i

n+ 1 =ui
n + ui

n+ 1

 i
n+ 1 =i

n +  i
n+ 1  

• of convergence Archivage
• of the results at time One t i

 {
ui = ui -1 +ui

i =i -1 + i

i

i

 

notices that  there are  three overlapping levels  of  loops:  an external  loop on time step,  a  loop of 
iterations (qualified the total ones) of Newton and possible subloops for the linear search (if  she is 
asked by the user)  and certain behavior  models requiring of  the iterations (known as interns),  for 
example for elastoplasticity in plane stresses. If

one chooses the criterion based on the assembled tangent matrix [éq 2.3.2.5 - 3], it is necessary to 
have this matrix reactualized for each step where one wants to analyze stability. It
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is the case when one uses a method of the Newton type, and not a modified method of the Newton 
type. One

leads then to the following algorithm: and

u0 ,0  known 0  Buckles

over times (or t i  increments of load): loading known Li =Lt i

• ui - 1 ,i -1  Prediction

• : computation of and ui
0  Buckles i

0

• on iterations of Newton: computation of a known continuation ui
n , i

n


• ui
n ,i

n
  and ui

n , i
n
  Computation

• of the matrixes and vectors associated with the following loads Form
• of the behavior model computation

• of the stresses and i
n  local variables from i

n  the values and l -1  with l -1  

the  preceding  equilibrium  ()  and t i -1  with  the  displacement  increment  since 

u i
n=u i

n -ui - 1  this equilibrium computation

• of the “nodal forces”: possible QT
i

n +BT
i
n

• computation of the tangent stiffness matrix: Computation K i
n =K ui

n


• of  the  direction  of  search  per  ui
n +1 ,i

n+1
  resolution  of  a  linear  system 

Iterations
• of linear search: Actualization 
• of the variables and their increments: Test

 {ui
n+1 = ui

n +  ui
n+ 1

 i
n+ 1= i

n + i
n+ 1 et {u i

n+ 1 =ui
n + ui

n+ 1

 i
n+ 1 =i

n +  i
n+ 1  

• of convergence Archivage
• of the results to time Criterion t i

 {
ui = ui -1 +ui

i =i -1 + i

i

i

 

• of stability, function of the reactualized tangent stiffness: K i
n =K ui

n


The criterion is calculated at the end of the step, just after the archivage. It thus has like arguments the 
quantities converged with the current step. Moreover, this choice of position of call makes it possible to 
take account correctly following loadings, since their  computation is made the iterations of Newton 
during. The criterion could not thus be called before the end of these iterations. Impact

3.2.1.2 on the structure of data result of STAT_NON_LINE 

the call of the nonlinear criterion of stability will induce the resolution of a problem to the eigenvalues. 
Result of this computation will be thus a set of couples critical load/mode of buckling. 
The critical loads are scalars and the associated modes are fields of displacement, which will come to 
enrich data structure of STAT_NON_LINE result . Characteristics
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3.2.2 related to the strain tensor In

the code, it is advisable to distinguish two large families from description of the strains. On the one 
hand

the linearized tensor corresponds to the case of the small disturbances (argument PETIT of key word 
DEFORMATION  ),  but also  to  the  case  of  the  small  disturbances  reactualized  (Lagrangian 
reactualized  with  each step  of  incremental  computation:  argument PETIT_REAC  of key  word 
DEFORMATION ). 

The strain tensor is written then (like [éq 2.2-3]): éq

 =
1
2

∇ u+∇
T u  3.2.2-1

the use of PETIT_REAC implies a resolution of the equilibrium of structure on its current geometry 
with a linearized strain tensor. One thus calculates the increment of strain compared to the position, 
X with displacement and u  the displacement increment in the following way u  : éq

ij =
1
2  ∂ui

∂X + u j

+
∂u j

∂ X + ui  3.2.2-2 In addition

, the code offers strain tensors of the type Green-Lagrange (GROT_GDEP) for the processing of 
large displacements (and of the rotations finished for certain structural elements) but under assumption 
of small strains. The tensor used is the following classical tensor [éq 2.3.1-5]: éq

ij u=
1
2

u i , j + u j ,i = uk , i uk , j  3.2.2-3

key word GROT_GDEP applies to the modelizations beam, shell or 3D. Lastly, 

the frame of  modelization in great  transformations most  complete accessible in the Code_Aster  is 
resulting from the theory of Simo and corresponds to the key word SIMO_MIEHE  . He takes into 
account  large  rotations  and  the  large  deformations  since  the  constitutive  law  is  written  in  large 
deformations. For more precise details on the fundamental differences between the various types of 
strains,  the  documentation  [bib16]  of  Code_Aster  presents in  detail  modelization  SIMO_MIEHE  . 
Code_Aster

does not allow computations in eulerian configuration: as with the tensor of Almansi, for example. All 
the strain tensors available are of Lagrangian type. 

The fundamental difference, as for the writing of the criterion, is between the linearized strains (PETIT 
and PETIT_REAC ) and the strains GROT_GDEP and SIMO_MIEHE . Indeed 
, the Code_Aster  needs to make its search for equilibrium of the tangent matrix. This one is written 
according to the equation ([§ 2.2.2.1] of documentation on STAT_NON_LINE [feeding-bottle 14]): 
éq

KT =QT :
∂

∂u
+
∂QT

∂u
: 3.2.2-4 Gold

, corresponds QT :
∂

∂u
 at the end classic of the material stiffness and corresponds 

∂QT

∂u
:  at the 

end of geometrical stiffness which is present only in large displacements. Thus when one wants to 
apply a criterion of buckling of the type (formally assimilable to [éq 2.3.2.2 - 2]):. K +K  =0
This
criterion is valid only in small strains since the geometrical term of stiffness is regarded as negligible in 
the tangent matrix. One
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can thus, with reason, to make a classical search of the eigenvalues and eigenvectors of type buckling 
of Eulerian. On the other hand

 
in great transformations, the evaluating of this criterion by the same method is problematic for two 
reasons. On the one hand, in the tangent matrix, the geometrical term of stiffness is already calculated 
and, on the other hand, matrix qu  K   “it would possibly be necessary to add is obtained under 
Code_Aster  in small strains. For these reasons, it is necessary D” to evaluate in a way different the 
criterion according to the type of strain tensor requested by the user. If

one made the choice of an eulerian description, the development of a criterion of the Eulerian type 
reactualized would be facilitated on the level of the computation of the term, K   whatever the strain 
tensor. In

3.2.2.1 linearized strains: PETIT and PETIT_REAC As

we said previously, this case does not pose a major problem. It is enough to calculate the geometrical 
stiffness matrix and to make a classical search for modes and eigenvalues, of type Eulerian [éq 2.3.2.2 
- 2]: éq

K +K  = 0 3.2.2.1 - 1 is

K  the tangent matrix reactualized at the end of time step. In this case, 
one can thus speak indeed about criterion of the Eulerian type reactualized. As
one is in small strains, the matrix of the geometrical stiffness is proportional to the loading. Therefore, 
when the critical coefficient is obtained, it   is enough to multiply it by the real load with time step 
current to obtain the critical load of buckling. The case thus =1  corresponds to the loss of stability. 
Certain
finite elements as shells DKT do not allow the computation of the geometrical stiffness matrix, contrary 
to the elements of the type COQUE_3D , for example. In

3.2.2.2 large displacements: GROT_GDEP and SIMO_MIEHE 

the classical method does not apply any more in this case. Indeed, Code_Aster calculates like tangent 
matrix the material stiffness matrix plus the geometrical stiffness matrix (and possibly, the contribution 
due to the following pressures). One
of the ways check buckling then is to only make a search of the eigenvalues of the tangent matrix. If 
one of the eigenvalues is negative, it is that the matrix became singular and that an instability occurred 
between the moment when all  its  eigenvalues were positive  and moment when one of  it  became 
negative. 
The problem with  treating is  thus slightly  different  since in  the case of  small  strains (PETIT and 
PETIT_REAC ), one has the following system to solve [éq 3.2.2.1 - 1]: , whereas K + I = 0  in 
case GROT_GDEP and SIMO_MIEHE it is necessary to solve: formuleéq

K +I = 0 3.2.2.2 - 1 With

which I  is the matrix identity and is   , this time, of physical size equivalent to, K whereas in the 
case of the small strains, the eigenvalue is   adimensional (from where its direct interpretation as a 
multiplying coefficient of the loading). One

of  the  defaults  inherent  in  this  method  compared  to  the  more  classical  search  higher  explained 
[§2.3.22.3.2 why one can have forecasts of buckling only when one approaches “close” the critical 
load, even when one exceeds it. Far from this load, the first found eigenvalue does not have really 
physical meaning since nonlinearities can appear between the step running and the calculated critical 
load. The critical coefficient ratio on load at time is i  thus different from that at time whereas i +1  in 
small strains this ratio remains constant. Moreover
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,  for  all  time  step,  all  the eigenvalues  and  eigenvectors  except  lowest  do  not  have  any physical 
meaning since, for a couple eigenvector eigenvalue, one Vi ,i  a: éq

K u+K  Vi = iVi 3.2.2.2 - 2 This

has clear meaning only as from the moment when, i0 in which case the critical load is found and 
the eigenvector criticizes associated. Always
compared to criterion of Eulerian (reactualized [éq 3.2.2.1 - 1] or not [éq 2.3.2.2 - 2]), one notices that 
the eigenvalue of the problem [éq 3.2.2.2 - 1]:  K +I  = 0  is not adimensionnée. It results from 
this a greater difficulty from interpretation as for knowing if the value is “small” or not. In other words, 
when can one say that one is close to a bifurcation? 
To define a relevant interval and of general use, in order to limit the vicinity of an instability, it would be 
interesting of adimensionner the eigenvalues. Case

3.2.2.3 of the mixed modelizations As

Code_Aster makes it possible to assign several types of strains to same structure, the case should be 
considered where one uses several types of strain tensors in same computation. 
The differentiation of the various elementary matrixes being of no utility, it is appropriate to be solved to 
slice  at  the  total  level  between  a  method  or  the  other.  One  chose  to  extract  the  values  and 
eigenvectors from the tangent matrix without adding geometrical stiffness matrixes. All occurs as if the 
structure were in strain of the Green-Lagrange type from the point of view of the criterion. Indeed, I let 
us consider an unspecified solid made up of two parts and II. On the part I, the strain tensor which was 
adopted is the tensor linearized PETIT  and on part II that of Green  - Lagrange. The tangent matrix 
from the assembly of the two submatrices becomes: éq 

[
K I * 0
* * *
0 * K II +K II  ] 3.2.2.3 - 1

the spangled terms represent the nodes common to both parts and are thus a linear combination of the 
values of the two matrixes. In this configuration, it appears that none the solutions is satisfactory but 
that  less  penalizing  is  to  make  a  search  for  “type Green  - Lagrange” [§  3.2.2.23.2.2.2 use  [éq 
K + I= 0  3.2.2.2 - 1]. This

solution not being exact but nevertheless the only able one to be carried out simply, it is envisaged to 
add  an  alarm  message  informing  the  user  whom the  got  results  are  not  guaranteed  due  to  the 
juxtaposition of several types of strain tensors. Improvement

3.2.3 of performances of criterion During

resolution  incremental  of  problem  quasi-static  nonlinear,  in  ideal  and  if  it  is  admitted  that  the 
discretization in time is sufficiently fine, he would be necessary to make an analysis of stability to each 
computation step. A each step, that induces the resolution of a problem to the eigenvalues, certainly 
limited in search of some modes. The analysis of stability thus brings an important overcost CPU, with 
a nonlinear computation already being able to be long. 

The idea is to call on the resolution of a problem to the eigenvalues only when it is really necessary, 
therefore when the current configuration is “close” to an instability. If one can define this vicinity by a 
preset interval, then one can call on a test of Sturm type [bib12]. This
test makes it possible to know if there exists at least an eigenvalue on the interval of search. In the 
affirmative, one will be able to then carry out the modal search. In the contrary case, one continues the 
quasi-static incremental resolution, without solving problem with the eigenvalues. 
The cost of a test of Sturm type is notably lower than the cost of search of the critical loads. 
The interval of search for the test of Sturm type can, either to be given by the user, or to have a value 
by default in the code. In the case of
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a criterion of Eulerian reactualized (case of the small strains [§ 3.2.2.13.2.2.1 where the problem to be 
solved is written: [éq K +K   = 0  3.2.2.1 - 1], the interval of search must be centered on the 
eigenvalue  (which  = 1  corresponds  to  value  -1  for  the  algorithm  of  MODE_ITER_SIMULT  , 
because he solves in fact a problem of the type: )) K  =K   . 
The  limits  of  the  interval  are  the  limits  of  the  multiplying  coefficient  of  the  loading,  therefore 
adimensional quantities, which are function of the safety coefficients and the evaluating of uncertainties 
for the problem given. The test of Sturm type is implemented in this frame. In
the specific case adapted to the tensor of Green-Lagrange [§ 3.2.2.23.2.2.2 where one solves: [éq 
K + I= 0  3.2.2.2 - 1], the interval is centered on 0. Moreover, the limits of the interval of test, 

contrary to the preceding case, are not adimensionnées [§ 3.2.2.23.2.2.2It  is  thus more difficult  to 
identify relevant and general values (for the case of the default values). The test of Sturm type is not 
currently established for this case. Generalization

3.3 with the dynamics We

will not approach here the frame of the criteria of dynamic instability (negative damping…). It is just a 
question of announcing that the nonlinear criterion presented here can completely apply directly in 
nonlinear dynamics. It will  then detect any potential buckling of structure, within the meaning of the 
singularity of the total matrix of reactualized tangent stiffness. In order to
be exhaustive in terms of analysis of stability on a nonlinear dynamic study, the user should use two 
criteria: 

•a criterion of buckling (criterion on the stiffness), 
•a dynamic criterion (criterion on damping or the total quadratic linearized problem [bib13],  for 
example). For

time, the criterion of buckling on the stiffness (identical to that of STAT_NON_LINE ) is only available 
in DYNA_NON_LINE . The modelization

coupled fluid-structure (U,  p,  F) [R4.02.02],  which is available in DYNA_NON_LINE  , requires 
some  adaptations  of  use  of  the  nonlinear  criterion  of  stability.  Indeed,  this  coupled  formulation 
generates an intrinsically singular stiffness matrix on all the total assembled fluid degrees of freedom, 
which makes it incompatible with the research method of eigenvalues used for the analysis of stability. 
One can however circumvent the problem by correcting the problem assembled (stiffness matrix and of 
geometrical stiffness if need be) thanks to the use of two specific key words. The analysis of stability 
relates then to the structures degrees of freedom alone. Syntax

3.4 of call of the criterion In

operators STAT_NON_LINE or DYNA_NON_LINE , the call to the criterion is done in the following 
way: CRIT

_STAB = _F (CHAR_CRIT  = (-1.1, 0. ), NB_FREQ
= 3. ), 

key word CHAR_CRIT  defines the field on which one will  make the test of Sturm type, in small 
linearized strains. If one finds at least an eigenvalue on the interval, then, one leads the resolution of 
the corresponding problem to the eigenvalues, if not, one does nothing and incremental computation 
can continue. If

one uses modelizations GROT_GDEP or SIMO_MIEHE , the modal resolution takes place inevitably, 
and one searches the smallest eigenvalues. 
Key word NB_FREQ  makes it possible to specify the number of modes which one searches 
(default value: 3). It can be useful to search more than one mode, mainly to be able to detect the 
“pathological” cases such as multiple or very close modes. 

The mode of buckling corresponding to the smallest eigenvalue (in absolute value) is stored in the data 
structure  RESULTAT  (eigenvalues  named  CHAR_CRIT   , fields of  displacement  named 
MODE_FLAMB , which one can visualize via IMPR_RESU ). For
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the analyses of stability on transitory problems fluid-structure coupled (U, p, F) it  is necessary to add 
two  specific  key  words  MODI  _RIGI  and DDL_EXCLUS  under CRIT  _STAB.  U2.08.04 
documentation gives all the details on their use and benchmark FDNV100 gives of it an example of 
implementation. Validation
 

3.5 of the developments

the cases tests of validation are: SSNL126 and SSLL105D. 
More precisely, the cases tests SSNL126 treat the case of a beam fixed at an end and subjected to a 
compression at the other end. The modelization is three-dimensional, with elastoplastic behavior model 
with linear isotropic hardening. Two kinematical representations are presented: modelization

•a: linearized strains, modelization
•b: strains of Green-Lagrange. 

The case test SSLL105D is based on a problem of beam in, L which one studies elastic buckling. The 
finite elements are of standard beam. Code_Aster

4 conclusions

offers two criteria of stability, within the meaning of buckling, for the structural analyzes. On the one 
hand

, whenever a linearized approach is enough, one can apply a criterion of the Eulerian type ([bib12] and 
[bib17]), by call to an operator of resolution of the problem to the eigenvalues generalized (for example 
MODE_ITER_SIMULT with key word TYPE _RESU=' MODE_FLAMB'). In addition

, for all the cases where it is essential to take account of nonthe linearities, which they to the behavior 
model or the great transformations, the user is due can employ an adapted criterion, of Eulerian type 
generalized.  The call  of  this  criterion  is  done  during the incremental  resolution  of  the  quasi-static 
problem (operator STAT_NON_LINE [feeding-bottle 14]). A
each time step, the criterion is based on the resolution of a problem to the eigenvalues [bib12] on the 
brought up to date total stiffness matrixes. This
criterion, which is declined in two different forms, according to the strain tensor chosen, is based on a 
linearization around the current computation step. It accepts any type of strain tensor, as any type of 
behavior model for which one is able to build the total stiffness matrix, at every moment. Moreover, the 
selected criterion is perfectly rigorous in the case of the nonlinear elastic behavior models, and in the 
case of elastoplasticity associated with the assumption with Hill [§ 2.3.2.52.3.2.5Bibliography
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