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Constitutive law of reinforced concrete 
GLRC_DAMAGE plates 

Summarized:

This  documentation  presents  the  theoretical  formulation  and  the  numerical  integration  of  constitutive  law 
GLRC_DAMAGE [bib1]. She is written in a total way in forces and moments resulting for modelizations in finite 
elements from plates. This model integrates the elastic behavior and endommageable in bending coming from 
the concrete and the elastoplastic behavior coming primarily from steel reinforcements starting from the material 
characteristics of the two materials and the composition of the section of the reinforced concrete plate. It results 
from it  an  elastoplastic  behavior  endommageable  cyclic,  adapted  for  dynamic  studies  of  structures  out  of 
reinforced concrete. The model GLRC_DAMAGE current does not take into account the damage out of membrane 
and is thus not very precise when the requests of the plate are dominated by the effects out of membrane. On 
the other hand, the fracture of a plate depends especially on the steel reaction of, modelled by the elastoplastic 
part of the model. It is thus estimated that the fracture should be represented correctly even out of membrane. A 
model similar to that one, GLRC_DM, is able to better represent the damage out of membrane/bending, but does 
not take into account the phase of plasticization of steels and cannot thus be used to simulate the fracture.

The orthotropic elasticity induced by the orthogonal network of reinforcements is not taken into account that in 
the frame of a linear analysis; for the nonlinear analysis, one simplifies by building an approximate equivalent 
isotropic elasticity. At the present time, the general coherent tangent modulus is not available yet for this model.
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1 Introduction

1.1 Models of total behaviors

the total models and the represent the evolutions of the material within structure studied – beam and 
plate – on the basis of a relation between the generalized quantities of strains (extension, curvature, 
distortion) generalized forces (forces of membrane, bending, shears). These models “are fixed” as a 
preliminary using a fixed local analysis (for example using the results of limit analysis of the sections), 
according to  the  characteristics  of  the materials  concrete  and steel  constituting  the plate  and the 
distribution of those in the section, cf [Appear 1.1-a]. The general diagram is the following:

d  , ,  
loi globale de comportement


analyse locale

d N ,M ,T 
 (1.1.1)

This local analysis must take account of the various couplings: for example the evolution in bending is 
dependant on the value of the normal force applied. The nonlinear equilibrium of structure is treated at 
the total level on the generalized forces, via the kinematics of plate considered.
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Appear 1.1-a: Pave out of reinforced concrete.

As the local analysis is put in work only in preprocessing (in the frame of an analysis in monotonous 
load), there is not an immediate layer to return in the course of computation to the local analysis of the 
stresses  starting  from  the  generalized  internal  forces.  Indeed,  the  dissipative  character  of  the 
irreversible constitutive laws requires to store during cycles the evolution of the local variables in any 
time if one wants to calculate the stresses in a particular point. One could plan to launch in parallel the 
three-dimensional constitutive law according to [éq 1.1-1] and to integrate in the thickness to return to a 
total behavior,  but the cost and the complexity of such a approach seem an obstacle. It should be 
noted that could be a layer to consider the mistake made by a total constitutive law. On the other hand, 
this approach is not adopted yet in Code_Aster.

This kind of model can be usefully validated by comparison with a direct analysis carried out with a 
local model.
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1.2 Purposes of model GLRC_DAMAGE 

One finds the formulation initial  of  the model  total  of  reinforced concrete  of  plate  GLRC_DAMAGE, 
established by P.Koechlin in 2002, in [bib1], [bib2] and [bib3].

This model was first of all developed for applications of dynamics with failure under impact of works out 
of reinforced concrete. The elastoplastic response of the model is essential for this kind of applications. 
Indeed, dissipation of energy by plasticization of steels is important. The taking into account of the 
damage by cracking of the concrete makes it possible to make more precise the first phases of the 
behavior  nonlinear.  In the frame of  seismic applications,  one can expect  a reversed situation:  the 
damage and  the  response  after  cracking  are  essential,  while  it  is  rare  to  go  until  mobilizing  the 
generalized plasticization of steels. He seems however advantageous to have the same model to treat 
these two families of applications.

The formulation of the model is established in the frame of the thermodynamics of the irreversible 
processes.  It  combines  plasticity  with  hardening,  in  particular  brought  by steels,  and the  damage 
brought by the concrete fissuring at the time of the bending of the plate. The plastic behavior is built on 
the basis of limit analysis in bending of a reinforced concrete plate. It is described using the frame of 
the generalized standard materials. On the basis of results experimental, cf [bib1], a linear kinematic 
hardening was selected to treat the cyclic behavior. The damage is introduced to represent the elastic 
loss of stiffness which takes place by cracking of the concrete before the plasticization of steels. The 
threshold of damage is supposed to be constant. This behavior is supposed to be independent the 
velocities of requests (dissipations are instantaneous).

2 Formulation of the model

One  presents  hereafter  the  formulation  of  model  GLRC_DAMAGE,  under  the  formalism  of  the 
thermodynamics of the irreversible processes.

One must note that the use of this model is associated with that of a shell element. If one chooses the 
family  of  finite  elements  DKT (supported  modelization:  DKTG),  one  adopts  the  theory  of  Coils-
Kirchhoff,  i.e.  one  considers  no  transverse  distortion  in  the  thickness  of  the  plate.  The  model 
GLRC_DAMAGE could be usable with the finite elements of thick plate Q4G, but this extension was not 
carried out yet.

The mesh of the finite element is supposed to be placed on the average average of slab (with z=0 ).

For being able to use the model behavior GLRC_DAMAGE in two different types of analysis, one chose 
according to the case:

[1] for a linear elastic analysis of reinforced concrete plate: to take into account the 
orthotropy induced by the orthogonal network of steel reinforcements, as well as the 
coupling bending-membrane in the event of unequal three-dimensions functions of 
reinforcements, via a steel-concrete homogenized elastic behavior;

[2] for an elastoplastic analysis endommageable nonlinear of reinforced concrete 
plate: to neglect the orthotropy and the coupling bending-membrane in the phase of 
elasticity. This assumption makes it possible to simplify the model, by supposing that 
in  the  presence  of  strongly  nonlinear  phenomena,  orthotropic  elasticity  becomes 
negligible,  especially at the time of the modelization of the fracture. Moreover,  in 
practice one expects that the walls, veils as well as the other structural elements are 
reinforced about in the same way between the two orthogonal principal directions. 
That causes to decrease the effect of the elastic orthotropy. On the other hand, one 
very often chooses asymmetrical reinforcements in order to optimize them according 
to the direction of  the loading due to the inertia  loading.  That  tends to  induce a 
membrane-flexure coupling in elasticity besides that in plasticity.  However, even if 
however the model asymmetry in elasticity neglects, its influence in elastoplasticity, 
the  dominating  behavior  during  the  fracture,  can  be  controlled  through  functions 
threshold, which they can be asymmetrical.
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The model is  defined by the description of  the variables of  state,  which represent  the mechanical 
system in each material point of the mean surface of the plate, the surface density of free energy which 
includes the form of the behavior models and the type of hardening, the statement of the plasticity 
criteria and damage, and the laws of irreversible evolution, deduced from the principle of the maximum 
work of Drücker.

2.1 Variables of state

the total variables of state are the following ones. First of all aggregate variables of strain:
[1] a membrane strain tensor:   defined in the tangent plane in the plate.
[2] a tensor of curvature:   defined in the tangent plane in the plate.

Then local variables:
[1] two variables of damage associated with the parts higher, d 1  and lower, d 2  of the 

plate. They are put a ceiling to each one with a value, d 1
max  and d 2

max .

[2] two tensors of plastic curvature associated with the plasticization of the beds of steel, 
superior and inferior 1

p , 2
p .

[3] two strain tensors membrane plastic associated with plasticization with the beds with 

steel, superior and inferior  1
p ,  2

p .

[4] tensors of order 2 of kinematical local variables of hardening  .

2.2 Free energy: linear elastic case

the surface density of free energy is an additive statement of the contributions elastic of membrane and 
bending:

e
S
=

1
2
 :H m: 

1
2
 :H f : :H mf :  (2.2.1)

the tensors Hm  Hf ,  Hmf  (coupling bending-membrane in the event of unequal three-dimensions 
functions of reinforcements in the thickness) are described with [§3.1]. In the actual position of the 
model, one supposes that:

H mf=0  

thus that the plate is symmetric and that there is no elastic membrane-flexure coupling. In the model, 
membrane-flexure  coupling  can  appear  only  because  of  one  evolution  towards  elastoplasticity  (cf 
§2.5).

2.3 Free energy: elastoplastic case endommageable

In this case, one neglects the elastic orthotropy induced by reinforcement in the two directions of the 
plane,  as  well  as  the  elastic  coupling  bending-membrane  (for  dissymmetrical  three-dimensions 
functions  of  reinforcements).  One  thus  compares  steel  reinforcements  to  an  isotropic  elastic 
membrane, cf [Appear 1.1-a].

The  surface  density  of  free  energy  is  an  additive  statement  of  the  contributions  elastoplastic of 
membrane, elastoplastic endommageable of bending, and kinematic hardening:

epd
S  , p , , p , d1, d 2, =e ,m

S − ped , f
S − p , d 1, d 2 p

S  H d j−d j
max  (2.3.1)

with the energy of hardening:
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 p
S
 =

1
2
 :C :  (2.3.2)

   
where C  is a tensor of kinematic hardening of Prager. In practice the tensor  C  is diagonal, with a 

coefficient Cm  out of membrane and another C f  in bending, one thus has:

C=
C m 0 0 0 0 0
0 Cm 0 0 0 0
0 0 Cm 0 0 0
0 0 0 C f 0 0
0 0 0 0 C f 0
0 0 0 0 0 C f

  

In [éq 2.3.1],  H  an indicating function of  the field of admissibility  of the thermodynamic potential 

indicates. Concretely, it is used to limit the evolution of the damage to the top of  d j
max .  d j

max  Are 

identified by [éq 3.2.11].

The densities of energy of membrane and bending are given by:

[1] Out of membrane:

e ,m
S
−

p
=

1
2
−

p
 :H m :− p

  (2.3.3)

[2] In bending:

ed , f
S − p , d 1, d 2=

 f

2
tr − p2 f tr −

p , d 1, d 2 f∑
i=1

2
−pi

2 f 
− pi , d1, d2  (2.3.4)

where one introduces the parameters of Lamé in bending f  and f  :

 f=
h3

12


 f=
h3

12


 

h  being the thickness of the plate and  ,   coefficients of Lamé of the homogenized material.
−

p
i  indicate the ième eigenvalue of −

p . One will note thereafter 
e  the tensor of variation 

of  elastic  curvature  definite  according to  the  assumption  of  partition  of  the strains in  bending by: 


e
=−

p .

And finally, one defines the function characteristic of the damage in bending f  :

 f x , d 1, d 2=
1 d1

1d1

H x
1d 2

1d 2

H −x  (2.3.5)

In this statement H  is the Heaviside function and   a parameter of the damage ranging between 0 

and 1. This function  f  characterizes the weakening of the stiffness by damage. It is decreasing for 
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d1 ,  d2  positive. It is convex (thanks to the choice of   , identified by the procedure described in 
[§3.2.2]) to ensure the stability of the “material” reinforced concrete of slab.

2.4 Elastoplastic constitutive law endommageable

elastoplastic constitutive law the endommageable (state model) provides the dual variables: the forces 
of membrane, the bending moments which are of the tensors of order 2 definite on the tangent level of 
the plate, irreversible forces of damage and the tensor of hardening. They are written:
[1] Force of membrane:

N=
∂epd

S

∂
=H m :− p

  (2.4.1)

[2] Bending moment:

M=
∂epd

S

∂
=H f

d
−

p , d 1, d 2:−
p
  (2.4.2)

elasticity tensor membrane H m  is given in [§3.1], while H f
d  is the elasticity tensor endommageable 

which depends on the variables of damage d 1 ,  d 2  and also of the signs of certain components of 


e
=−

p  (of the trace and the eigenvalues, in particular). One recalls that in [éq. 2.4.1] and [éq. 
2.4.2] elastic membrane-flexure coupling is neglected (see [§2.2]). Moreover, because of the presence 
of the eigenvalues of the elastic curvatures in the statement of the free energy (see [éq. 2.3.4]), one 
calculates the generalized stresses by means of  the equations [éq. 2.4.1],  [éq. 2.4.2]  in  the clean 
reference. The details of the transformation between the references are available in [R7.01.32]. It is 
also specified that according to the isotropic assumption of elasticity membrane-flexure coupling is due 
only to the elastoplastic process through 

p  and 
p  (cf §2.5).

Note:
It is noted that the clean reference of the moments is the same one as that of the elastic curvatures. In the same 
way the clean reference of the forces of membrane is the same one as that of  the elastic strain. In the absence 
of damage  f  x ,d 1,d 2=1 : one finds well a behavior of elastic plate isotropic. 

[1] Forces of damage, for j=1,2  :

Y j=−
∂epd

∂ d j

=
1−

1d j
2   f

2
tr  e


2 H −1 j tr e

 f∑
i

 i
e


2 H −1 j
i

e
  (2.4.3)

that they definite Y j  by [éq are noted. 2.4.3] are positive (it is a surface restitution of energy, of which 

the unit IF is J/m ²) if ∈[0,1] .

[2] Forces and irreversible moments of plasticity:

N p
=
∂epd

S

∂
p =H m: − p

=N  and M p
=
∂epd

S

∂
p =H f

d :− p
=M (2.4.4)

[3] Tensor of recall of kinematic hardening: 

X m
=
∂epd

S

∂m

=−C m :m  and X f
=
∂epd

S

∂ f

=−C f : f (2.4.5)
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2.5 Criteria – surfaces thresholds

2.5.1 Plasticity criterion

the plasticity criterion of Johansen with kinematic hardening is duplicated for the plasticity of the 
upper part (index 1) and the lower part (index 2) of the plate. This criterion couples plasticity out of 
membrane with that in bending. If  x  and  y  the directions of the orthogonal reinforcement of the 
concrete plate indicate, for j=1,2 , the criterion is written:

f j
p
N−X m ,M−X f

 = −M xx−X xx
f
−M jx

p
N xx−X xx

m


× M yy−X yy
f
−M jy

p
N yy−X yy

m
M xy−X xy

f


2
≤0

 (2.5.1)

define f j
p  Them a convex field (cf [bib4]) of reversibility, parameterized by 4 functions:  M jx

p
N xx   

and  M jy
p
N yy . These functions are built using the limit analysis of sections of reinforced concrete 

beam representative of the section of the studied plate, taken in the meaning of reinforcements of 
reinforcement, cf [bib1, bib2]. It is noted that only the differences between the state of requests and the 
tensor of recall in hardening intervene in the statement of the criterion. This is characteristic of the 
models with kinematic hardening.

The potential of dissipation associated with this criterion is given by:

tot=N : ̇M : ̇−̇epd= p d

 p=N : ̇ p
M : ̇ p

−̇m :Cm :m−̇ f :C f : f

d=Y 1 ḋ1Y 2 ḋ 2

 (2.5.2)

2.5.2 Criterion of damage

the brittle criterion of damage without hardening is defined by a scalar. This criterion is duplicated to 
differentiate positive bendings from negative bendings. He is written:

f j
d
Y j=Y j , d j−k j≤0  (2.5.3)

This criterion represents a convex field (cf [bib2]) of reversibility parameterized by the thresholds k 1  

and k 2  which define the appearance of first cracks in bending of the reinforced concrete plate. Their 

unit IF is it J /m2 . They correspond to a limitation of the surface density of elastic strain energy. This 
criterion is associated with the positive potential of dissipation:

d d j , ḋ j=k j ḋ j≥0  and ḋ j≥0 (2.5.4)

This criterion of damage is basic, but it is its combination with the effect of the damage on the elastic 
stiffness, cf the function  f x , d1, d 2  [éq. 2.3.5], which exploits the response of the model.
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2.6 Models of yielding

the model of yielding is written (according to the normality rule with the criterion [éq. 2.5.1]):

̇
p
=̇ 1

p
̇ 2

p
=1

p ∂ f 1
p

∂N
2

p ∂ f 2
p

∂ N
 (2.6.1)

̇
p
=̇1

p
̇ 2

p
=1

p ∂ f 1
p

∂M
2

p ∂ f 2
p

∂M
 (2.6.2)

̇
m
=̇ 1

m
̇ 2

m
=1

p ∂ f 1
p

∂ X m2
p ∂ f 2

p

∂ X m=−−̇1
p
−̇ 2

p
=̇

p  (2.6.3)

̇
f
=̇ 1

f
̇2

f
=1

p ∂ f 1
p

∂ X f 2
p ∂ f 2

p

∂ X f =−−̇1
p
−̇2

p
=̇

p  (2.6.4)

where are  j
p  to them the plastic multipliers, positive or null, for positive bendings and the negative 

bendings. They are divided by flow out of membrane and that in bending. One deduces from [éq. 2.6.3] 
and [éq. 2.6.4], in a usual way in linear kinematic hardening, that the local variables of hardening out of 
membrane and bending are equal respectively to the strains and the plastic curvatures. It results from 
this the following relations on the tensors from recall out of membrane and bending:

X m=−C m : p  (2.6.5)

X f=−C f : p  (2.6.6)

It should be noted that this choice of an identical tensor of C m  Prager at the same time in tension and 
compression is criticizable. Indeed, in plastic compression, the concrete and steel intervene, while in 
tension, only steel contributes (concrete being broken).
The plasticity criteria [éq. 2.4.1] can be reached at the same time (for specific schemes of bi--bending), 
therefore  flow  can  take  place  since  the  two  criteria  reached  at  the  same  time.  The  condition  of 
coherence gives two additional relations:

 j
p ḟ j

p
N ,M =0 si  j

p
0 alors ḟ j

p
N ,M =0  (2.6.7)

2.7 Law of evolution of the variables of damage

the  law of  evolution  of  the  damage in  bending is  written,  for  positive  bendings  and  the  negative 
bendings (according to the normality rule with the criterion [éq. 2.5.3]):

ḋ j= j
d ∂ f j

d

∂Y j

 (2.7.1)

are  j
d  to Them the multipliers of damage, positive or null. That they are pointed out Y j , definite by 

[éq. 2.4.3], are positive by construction (restitution of energy).

The condition of coherence gives two additional relations:

 j
d ḟ j

d
Y j=0 si  j

d
0 alors ḟ j

d
Y j=0⇔Ẏ j=0  (2.7.2)

the two variables of damage can evolve simultaneously.

3 Parameters of the model
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With the  total  models  such as  GLRC_DAMAGE one seeks  to  have a  simpler  representation of  the 
nonlinear  phenomena,  by  means  of  the  more  effective  and  more  robust  numerical  methods. 
Consequently, it is difficult to allot a physical meaning to all the parameters of the model, because most 
between them include several phenomena. Thus, it is strongly recommended that the parameters of 
the  model  are  validated  by  a  comparative  study  between  approach  GLRC_DAMAGE and  a  finer 
approach, the such modelizations by multifibre beams, shells multi-layer or 3D, on a part sufficiently 
representative  of  structure  to  be  analyzed.  Or  else,  the  error  of  an  analysis  using  the  model 
GLRC_DAMAGE cannot be estimated nor controlled.

In any case,  the parameters of the model are given in a way simplified using the analysis  of  the 
monotonous behavior of a reinforced concrete section, except for the linear elastic behavior where it is 
also possible to resort to an approach homogenized out of plate, cf for example [bib4]. It is supposed 
that  the  set  of  parameters  describing  the  elastic  behavior  is  identifiable  independently  of  the 
parameters  of  plasticity  and  damage.  Moreover,  the  methods  of  homogenization  enable  us  to 
determine the total elastic behavior with a very good accuracy. One considers in [§3.1] two approaches 
to  homogenize  the elastic  behavior:  in  one one makes the assumption of  an isotropic  equivalent 
medium and in the other the orthotropy is taken into account. Now, only the isotropic approach is 
available  in  Code_Aster.  Moreover,  it  is  only  the  isotropic  approximation  which  can  be  used  in 
combination with plasticity and the damage. In theory, an extension to the orthotropic behaviors into 
linear and nonlinear could be under consideration in a theoretical frame are equivalent. The limitation 
with the isotropic cases was selected on the one hand because the phenomenon of the orthotropy was 
considered to be negligible during the fracture, of which simulation is the principal goal of the model, 
and on the other hand to reduce the formulation of the model and the identification of the parameters.

The parameters of the nonlinear behaviors are more delicate to determine than the parameters of 
elasticity.  For the damage that is simpler, because their number is smaller. On the other hand, for 
plasticity,  the user  must  inform a function,  determining the  limiting flow moment  according to  the 
membrane force. Moreover, kinematic hardening is given by four tensors of Drucker, each one having 
three parameters. In this version their number is artificially tiny room by supposing that these tensors 
are the same ones for the two thresholds of plasticity. If the behaviors in elasticity and with damage 
can be identified without having of a modelization (or a test) of reference, for the plastic behavior that is 
strongly disadvised.

h  The height of the section (thickness of the plate) is noted. One and the  x
sup=A x

sup/ d x
sup  notes 

 y
sup=Ay

sup/ d y
sup  densities of reinforcement in the two directions, cf [Appear 1.1-a], [Figure 3-a : 3-a]. 

A x
sup  (resp. A y

sup ) is the area of the section of a steel bar in the direction x  (resp. y ) of the higher 
three-dimensions  function.  One  makes  in  the  same  way  for  the  lower  three-dimensions  function: 

x
inf=Ax

inf /d x
inf   y

inf=A y
inf /d y

inf . In general, all the quantities having sup while exposing correspond 
to the upper part of the plate, while that with inf correspond at its lower part.

x

z

Ω
x

sup

Ω
x

inf

h

χ
x

suph/2

χ
x

infh/2
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z

x

d
x

sup

d
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Figure 3-a : 3-a Cut reinforced concrete slab; sight in prospect. 
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The adimensional positions of the three-dimensions functions of reinforcement in the thickness check:

x/ y
sup∈ ]0,1[  and x/ y

inf ∈ ]−1,0 [

the equivalent density of the reinforced concrete plate is defined by a simple average balanced by the 
densities a , b  of the respective proportions of the two materials (model of the mixtures). It is used 
to establish the kinetic energy of the plate.

éq=b
a

h
x

sup
 x

inf
y

sup
y

inf   (3.1)

This  equivalent  density  must  be  indicated  under  key  word  ELAS of  operator  DEFI_MATERIAU of 
definition of concrete material, with Young and the Poisson's ratio modulus of the concrete. This last 
data is used to draw up an estimation velocity of the waves, used for the control of time step in explicit 
integration (Flow condition):

E NU RHO
parameter Eb  b  éq  

Units IF [Pa] without [kg/m3]

3.1 Identification of the parameters of linear elastic behavior

the linear elastic behavior is a priori orthotropic and just a membrane-flexure coupling. To carry out an 
elastic design preliminary to a nonlinear analysis, one wishes to represent the best possible this kind of 
behavior of reinforced concrete structure.

One proposes to identify the coefficients of linear elastic behavior of two ways:
•by the orthotropic approach where one builds the elastic matrix membrane-bending starting 
from the elastic characteristics of the concrete ( Eb ,  b ), of steel ( Ea ) and the geometrical 
characteristics of the reinforced concrete section, cf (Figure 3-a : 3-a).

•by  the isotropic  approach where one determines the elastic  parameters  of  the  medium 
homogenized equivalent.

The total elastic model of reinforced concrete slab with coupling membrane and bending is written with 
the  tensors  H m  H f ,  H mf  and  is  given  in  the  orthogonal  local  coordinate  system related  to 
reinforcement by:


N xx

N yy

2N xy

M xx

M yy

2M xy

=
H 1111

m H 1122
m 0

H1122
m H 2222

m 0

0 0 H 1212
m  

H 1111
mf H 1122

mf 0

H 1122
mf H 2222

mf 0

0 0 H 1212
mf 


H 1111

mf H 1122
mf 0

H1122
mf H 2222

mf 0

0 0 H 1212
mf  

H 1111
f H 1122

f 0

H 1122
f H 2222

f 0

0 0 H 1212
f 

 xx

 yy

2 xy

xx

yy

2xy

  (3.1.1)

the orthogonal local coordinate system related to reinforcement is defined with  AFFE_CARA_ELEM (factor key 
word COQUE, key word ANGL_REP).

In this statement, H ijkl
m  are the stiffness of membrane, are H ijkl

f  to them the flexural stiffness and the 

H ijkl
mf  are the stiffness of membrane-flexure coupling. The orthotropy imposes in this reference which 
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the terms  H ij 12  are null. In the case of two grids of symmetric reinforcements, there is decoupling 

membrane-bending: H ijkl
mf =0 .

It  is  checked that  necessarily:  H 1111
m H 1111

f
− H 1111

mf 
2
0 ,  in  the same way in  the other  direction. 

Same way one must have: H 1111
m H 2222

m
− H 1212

m 
2
0  H 1111

f H 2222
f
− H 1212

f 
2
0 , always because of 

definite-positive character of the elasticity tensor.

•Orthotropic approach (unavailable in the Code_Aster now)

One directly builds the coefficients by the approximate following relations:

{H 1111
m

=
Eb h

1−b
2Ea 〈〉x

H 2222
m

=
Eb h

1−b
2Ea 〈〉y {H 1122

m
=
b Eb h

1−b
2

H1212
m

=
Eb h

1b

{H 1111
f
=

E b h3

121−b
2



Ea h2

4
〈

2
〉 x

H 2222
f
=

E b h3

121−b
2



Ea h2

4
〈

2
〉 y {H 1122

f
=

b Eb h3

121−b
2


H 1212
f
=

Eb h3

121b

{H 1111
mf =

Ea h
2

〈〉x

H 2222
mf

=
Ea h

2
〈〉 y

, {H 1122
mf

=0

H 1212
mf

=0

where one posed, to simplify, statements:

〈〉 x=x
supx

inf 〈〉 y= y
sup y

inf

〈〉 y=y
sup y

supy
inf  y

inf 〈〉 y=y
sup y

supy
inf  y

inf

〈
2
〉x=x

sup2

 x
sup
x

inf 2

x
inf , 〈

2
〉x=x

sup2

 x
sup
x

inf 2

x
inf

(3.1.2)

One supposes thus that steels do not bring stiffness in membrane distortion of the plate, nor in torsion.

Note:

The orthotropic  approach is  not  available  in  the current  version.  It  is  planned to  introduce it  into  the next 
evolutions of the model.
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•Isotropic approach
 
One builds the total elastic matrix of éq. 3.1.1 while supposing:


H 1111

m H1122
m 0

H 1122
m H 2222

m 0

0 0 H 1212
m = Eéq

m h

1−éq
m


2 
1 éq

m 0

éq
m 1 0

0 0 1−éq
m   (3.1.3)

for the membrane part and 


H 1111

f H1122
f 0

H 1122
f H 2222

f 0

0 0 H 1212
f = E éq

f h3

121−éq
f


2
 

1 éq
f 0

éq
f 1 0

0 0 1−éq
f   (3.1.4)

for the bending part. Membrane-flexure coupling is also neglected: 


H 1111

mf H 1122
mf 0

H 1122
mf H 2222

mf 0

0 0 H 1212
mf =0  (3.1.5)

By comparison with [éq. 3.1.3] and [éq. 3.1.4], one chooses the following relations, by privileging the 
average behavior in the plane and while realising on the directions  X and there, which give the four 
elastic coefficients necessary, starting from the notations [éq 3.1.2]:

éq
m
=b

2 Eb h

2 E b hE a1−b
2
〈〉x〈〉y 

 (3.1.6)

éq
f
=b

2 Eb h

2 E b h3 Ea1−b
2
〈

2
〉x〈

2
〉y 

 (3.1.7)

E éq
m
=Eb

b1−éq
m 2

éq
m
1−b

2


E éq
f
=Eb

b1−éq
f 2

éq
f
1−b

2


, Déq=
E éq

f h3

121−b
f


2


(3.1.8)

Among the two elastic approaches only the second (II) is currently available. 

The elastic coefficients of the concrete ( Eb , b ) as those of steels Ea  are indicated under key word ELAS of 

DEFI_MATERIAU. The characteristics of the provision of steels in the concrete plate ( x
inf  x

sup  y
inf  y

sup  

x
inf  x

sup  y
inf , y

sup ) are indicated under the key word THREE-DIMENSIONS FUNCTION of DEFI_GLRC. 

The height h  of the section is also provided by the operator DEFI_GLRC, key word BETON, operand 
EPAIS. The  directions  of  the  local  coordinate  system of  orthotropy  are  defined  by  the  operator 
AFFE_CARA_ELEM, key word COQUE with operand ANGL_REP. The linear elastic behavior is usable in 
nonlinear analysis under key word COMP_INCR with the operand RELATION = “GLRC_DAMAGE”.
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3.2 Identification  of  the  parameters  of  elastoplastic  behavior 
endommageable

  
The model of damage, [§2.3], is formulated under the assumption of isotropy (see [§3.1, II]), which is a 
reasonable approximation in most case. Moreover, it is admitted that the coupling bending-membrane 
(terms H ijkl

mf ) in the elastic phase of the behavior is negligible. 

According to [§3.1, II] one identifies the elasticity tensor bending-membrane (cf the tensors H m  and 

H f  defined by [the éq 2.3.3] and [éq. 2.3.4]):


N xx

N yy

2N xy

M xx

M yy

2M xy

=
E éq

m h

1−éq
m


2 
1 éq

m 0

éq
m 1 0

0 0 1−éq
m  0 

 0 
E éq

f h3

121−éq
f


2
 

1 éq
f 0

éq
f 1 0

0 0 1−éq
f 

xx

 yy

2xy

xx

yy

2 xy

  (3.2.1)

3.2.1 Identification of the thresholds of damage

One must identify the thresholds of damage defined by [éq. 2.4.3] starting from the limits of cracking in 
monoaxial pure tension and monoaxial pure bending (in the directions positive M 1

d  and negative M 2
d

)  of  slab out  of  reinforced concrete,  themselves  definite  starting from the threshold  of  strength  in 
tension of the concrete  ft≥0  (cf [bib2]). One with this intention uses the analytical resolution of the 
case  of  a  concrete  beam reinforced  in  the  same way  as  slab.  One preserves  the  approximation 
consisting  in  considering  three-dimensions  functions  of  reinforcements  realised  according  to  the 

directions  x  and  y .  It  will  thus  be  admitted  that  one  has  H 1111
m ≡H 2222

m ,  H 1111
f ≡H 2222

f  and 

H 1111
mf ≡H 2222

mf . Not to take into account this approximation leads to computations heavy and not very 

necessary.

In  positive  monoaxial  pure  bending  M xx ,  with  N xx=0   y=0 ,  xy=0  and  yy=−éq
f xx

={x , y} , the damage of the concrete is reached initially in lower skin of reinforced concrete slab: 

 ft=
Eb

1−b
2  xx xx h/2 . There are thus the following relations, cf [éq. 3.1.2], [éq. 3.1.3] and [éq. 

3.1.4]:

xx=−
H 1111

mf

H 1111
m xx  

then
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M xx = H 1111
f
−H 1122

f
éq

f
−
H1111

mf


H1111
m xx

= H 1111
f

1−éq
f


2
−

H 1111
mf 

H 1111
m xx

 (3.2.2)

 ft=
E b xx

1−b
2  h

2
−

H1111
mf

H1111
m = Eb M xx

1−b
2

H 1111
m

1−éq
f


2
H 1111

m H 1111
f
−H 1111

mf

2  h

2
−

H 1111
mf

H 1111
m   (3.2.3)

from where:

M 1
d
=1−b

2

 ft

Eb

1−éq
f


2
H 1111

m H 1111
f
−H 1111

mf


2

H 1111
m  h

2
−

H1111
mf

H1111
m 

−1

 (3.2.4)

If the coupling bending-membrane is neglected H 1111
mf =0 , one has simply:

M 1
d
=
 ft h

2

6

b

éq
f 1−éq

f

2
  (3.2.5)

In the same way, in negative monoaxial pure bending  M xx ,  with  N xx=0   y=0 ,  xy=0  and 

yy=−éq
f xx  ={x , y} , the damage of the concrete is reached initially in higher skin of reinforced 

concrete slab:  ft=
Eb

1−b
2  xx−xx h/2 . There are thus the following relations:

 ft=−
Ebxx

1−b
2  h

2
−

H 1111
mf

H 1111
m =− Eb M xx

1−b
2

H 1111
m

1−éq
f


2
H 1111

m H 1111
f
−H1111

mf


2  h
2


H 1111
mf

H 1111
m   (3.2.6)

from where:

M 2
d
=−1−b

2

 ft

Eb

1−éq
f


2
H 1111

m H 1111
f
−H 1111

mf


2

H 1111
m  h

2


H 1111
mf

H 1111
m 

−1

 (3.2.7)

If the coupling bending-membrane is neglected, one has simply:

M 1
d
=−

 ft h
2

6

b

éq
f 1−éq

f


2
  (3.2.8)

Note::

It is checked that: M 1
d≥0  and M 2

d≤0 .
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It any more but does not remain to connect these moments of cracking to the thresholds  k 1 ,  k 2  

defined in [éq. 2.5.3]. Since the loading is exerted from a virgin state d 1=d 2=0 . From where forces 
of damage (restitution of energy), cf [éq. 2.4.3]:

Y j=
1−

1d j
2   f

2
tr e


2 H −1 j tr e

 f∑
i

 i
e


2 H −1 j
i

e
  

where one applies d j=0   p=0  e= , xy=0  and yy=−éq
f xx  in order to obtain:

 Y j=
1
2
1−  f 1−éq

f


2
 f xx
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By means of [éq. 3.1.1] of the document [R7.01.32]:

 f=
h3 f E éq

f

121− f
2


 ,  f=
h3 Eéq

f

24 1 f 

one obtains:

Y j =
h3
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f 1éq
f
1−éq

f

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f xx

2
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
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f  M xx
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
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then:

k 1=
6
h3

1−

E éq
f

1éq
f
1−éq

f


1éq
f M 1

d


2
, k 2=

6
h3

1−

Eéq
f

1éq
f
1−éq

f


1éq
f M 2

d

2

(3.2.9)

These thresholds have as units IF the Joule.

The  linear  elastic  behavior  endommageable  is  usable  in  nonlinear  analysis  under  key  word 
COMP_INCR with  the  operand  RELATION =  “GLRC_DAMAGE”.  The  parameters  of  operator 

DEFI_MATERIAU MF1 and MF2 correspond to M 1
d  and M 2

d .

3.2.2 Identification of the slope of damage in bending

According to the relations developed in [§3.2] of [R7.01.32], the damaging slope is proportional to the 
parameter   :

p f= pélas  (3.2.10)

the parameter   corresponds to parameter GAMMA informed in operator DEFI_GLRC.

3.2.3 Identification of the maximum level of damage in bending
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In [éq. 2.3.1], one envisaged to limit the level of damage in bending of the reinforced concrete plate, 

using the values of d j
max . One associates these values with the slopes moment-curvature, for the two 

directions of loading j=1,2 , and compared to the elastic slope, to also see [Appear 3.2.4-a]:

p2, j

pélas

=
1d j

max

1d j
max  

from where, for j=1,2  :
  

d j
max
=

pélas− p2, j

p2, j− p f

 (3.2.11)

In operator DEFI_GLRC one informs QP1 and QP2 for p2,1  and p2,2 .

3.2.4 Identification of the parameters of plastic behavior

For the behaviors in elasticity and with damage, it is possible analytically to obtain the values of the 
parameters from materials properties and geometrical of the reinforced concrete. To characterize the 
parameters of the plastic behavior, it is imperative to refer to a finer modelization (beam multifibre, shell 
multi-layer  or  3D).  A  software  of  type  MOCO  (see  [bib10])  is  recommended  for  the  automatic 
identification  of  models  GLRC.  In  the  long  term,  it  is  expected  that  such  tools  are  integrated  in 
Code_Aster. In the current version, the identification of the elastoplastic part is completely left with the 
care of the users.

For the identification, it is more reasonable to identify the parameters of nonlinear behavior from tests, 
numerical  or  experimental,  with  a  monotonic  loading.  For  example,  one  can  use  a  test  with  the 
curvatures and the homogeneous times bending. Such a test is pseudo-unidimensional and can be 
entirely represented with only one graph, on which one can identify the thresholds of damage and 
plasticity just as the slopes corresponding to the various phases of loading, to see Appear 3.2.4-a. To 
measure the effect of the membrane force the monotonous test of bending must be combined with a 
loading out of membrane.
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Appear 3.2.4-a: Monotonous uniaxial bending.

On Appear 3.2.4-a, one distinguishes five phases: 
i) elastic phase characterized by the slope pélas  

ii) phase corresponding to the damage of the concrete (slope p f  ), 

iii) taken again stiffness due to steels after the attack of the maximum damage (slope p2  ) 

iv) plasticization of steels (slope p p ).

v) discharge elastic: the value of slopes of discharge is in the interval [ pélas , p f ]  for phases I) to 

III) and  applies p2  to phase iv). 
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To  describe  the  plastic  behavior  it  is  necessary  to  inform  the  functions  M jx
p N xx−X xx

m   and 

M jy
p
N yy−X yy

m
  j=1,2 , as functions “aster”,  FMEX1,  FMEX2,  FMEY1,  FMEY2 in  DEFI_GLRC. It is 

recommended by the command to define functions symbolic systems FORMULA, which must then be 
transformed  into  functions  discretized  by  the  command CALC_FONC_INTERP.  Besides  these 
functions, one must also inform their derivatives first and seconds, which, on the other hand, can be 
calculated by the operator CALC_FONCTION. Typically, they are functions close to parabolic functions. 

For a given direction, let us say x , the two functions M 1x
p  and  M 2x

p  define the elastic domain, as in 
Appear 3.2.4-b. 

  

Appear 3.2.4-b: The elastic domain is between the two curves membrane bending moment/force. The 
graph the model presents a comparison between the thresholds used by GLRC_DAMAGE and those 

obtained by a computation multi-layer on the case of a beam. 
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4 Numerical integration of the constitutive law

model  GLRC_DAMAGE was initially  conceived for analyses of  fast dynamics having recourse to the 
explicit  diagrams of temporal  integration. The version of the model is  almost identical  to the initial 
version and is thus not optimized for computations in static or implicit dynamics. Consequently, the 
model risk to be not very robust and not very powerful for an analysis with the large ones time step. It is 
expected that the numerical integration of the model is improved.

4.1 Evaluating of the damage

The model of damage used in GLRC_DAMAGE was extended to the membrane-flexure coupling and put 
in the model  GLRC_DM (see [R7.01.32]).  One thus returns the reader to  [R7.01.32]  for the details 
concerning the numerical integration of the damage part. The computation in GLRC_DAMAGE is simpler, 
because one neglects the influence of membrane energy on the evolution of the damage. 

4.2 Evaluating of yielding

the integration of the elastoplastic part is the most delicate part of the model. For time, one does not 
have  method  having  a  satisfactory  robustness  for  great  increments  of  (pseudonym)  -  time.  One 
summarizes below the characteristics of the model presented in [§2], that one can solve with difficulty 
by the classical approaches, based on the method of Newton.

• Double cones: The elastic domain of each function threshold defined in [§2.5.1] is not convex and 
can be represented by a double cone within the space of generalized stresses (see Figure 4.2-
a : 4.2-a). Obviously, it is only the cone close to the origin which represents the true elastic 
domain.  Thus,  the  resolution  of  plastic  admissibility  must  be  carried  out  by  adding  two 
inequations:

g1
pN−X m ,M−X f =M xx−X xx

f −M 1x
p N xx−X xx

m M yy−X yy
f −M 1y

p N yy−X yy
m ≤0  (4.2.1)

g2
pN−X m ,M−X f =M xx−X xx

f −M 2x
p N xx−X xx

m M yy−X yy
f −M 2y

p N yy−X yy
m ≤0  (4.2.2)

With the inequations [éq. 4.2.1] and [éq.  4.2.2],  one eliminates the solutions NON-physics 
from  the  plastic  equations  of  admissibilities  f j

p N−X m ,M−X f ≤0   j
p≥0 .  The 

functions g j
p  define the two planes g j

pN−X m ,M−X f =0 , separating the cones NON-

physics from the cones determining the elastic domain. On the other hand, the introduction of 
the inequations into the system prevents us from using the algorithms of the Newton type 
without important modifications.

•Summits of the cones : the other disadvantage, also related to the form of the elastic domain within 
the space of generalized stresses, comes from the two tops of the cones of the elastic domain (see 
Figure 4.2-a : 4.2-a). This property can also return the convergence of the difficult iterative algorithm. 

Because of  the two disadvantages mentioned above one cannot  apply  the algorithm of  the radial 
return, generally used for the resolution of the problems of plasticity. A its core one implemented an 
algorithm of “cutting planes”, combined with dichotomy. The details of the algorithm are available in 
[bib1].
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Figure 4.2-a : 4.2-a Plastic threshold within the space of generalized stresses in form of two double 
cones.

4.3 Evaluating of the tangent operator

Currently, the tangent operator of model  GLRC_DAMAGE is not coherent and does not guarantee the 
quadratic convergence of the total process of Newton. Its establishment is based on an older version of 
the model. This part of the model is still in building site.

4.4 Local variables of the model

Us listels here local variables stored in each Gauss point in the model installation of.

Number of local variable physical meaning
membrane V1 EXXP extension plastic
membrane V2 EYYP extension plastic
membrane V3 EXYP extension plastic
plastic V4 KXXP cumulated curvature
V5 KYYP cumulated plastic curvature
plastic V6 KXYP cumulated curvature
V7 cumulated Plastic dissipation
V8 D1 variable of endom. upper face
variable V9 D2 of endom. lower face
V10 Dissipation of damage
V11 angle of orthotropy
V12 angle of orthotropy
V13 angle of orthotropy
V14 NXX force of kinematical membrane of recall
V15 NYY force of kinematical membrane of recall
V16 NXY force of kinematical membrane of recall
V17 MXX moment of kinematical recall
V18 MYY kinematical moment of recall
V19 MXY kinematical moment of recall
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5 Checking

constitutive law GLRC_DAMAGE is checked by the cases following tests:

linear static SSLS126 Bending  of  a  reinforced  concrete  slab  (GLRC_DAMAGE 
models)  leaned  on  two  with  dimensions:  mode  of  elastic 
beam

[V3.03.126]

static linear SSLS127 Bending  of  a  reinforced  concrete  slab  (GLRC_DAMAGE 
models) leaned on 4 with dimensions: mode of elastic plate

[V3.03.127]

dynamic clarifies
nonlinear

SDNS106 Transient  response  of  a  reinforced  concrete  slab:  model 
GLRC_DAMAGE

[V5.06.106]
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7 Description of the versions of the document

Version
 Aster

Author (S) 
Organization (S)

Description of the modifications

8.4 D.Markovic
F.Voldoire
EDF-R&D/AMA

initial Text

9.5 S.Fayolle
EDF-R&D/AMA

Introduction  of  DEFI_GLRC,  rewriting  of  the  equations, 
reformulations of certain sentences,…

10.2 S.Fayolle
EDF-R&D/AMA

Cleaning and consistency with GLRC_DM
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