
Code_Aster, Salome-Meca course material
GNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Development in code_aster
ASTERXX – The new architecture of code_aster

Table of contents

Data structures

Data structures in python

Sources organization

Link between data structures and Fortran operators

Asterxx in a (big) nutshell
From python to Fortran via C++

Asterxx and development

2

Data structures (1/4)

In code_aster “legacy”, data structures are:
A set of jeveux objects (vector, collection, bidirectional map), example: a mesh (sd_maillage) is
composed of:
A jeveux vector containing coordinates of nodes
A jeveux vector containing names of nodes
And so on

Link together by names, example: for a mesh named MAIL in commands file:
The jeveux vector containing coordinates of nodes is named: ‘MAIL .COORDO’
The jeveux vector containing coordinates of nodes is named: ‘MAIL .NOMNOE’
…

Drawback
No link between objects (in sense of programming language)
No automatic garbage collector

3

Data structures (2/4)

Wrap C++ of aster data structures
Definition of classes which represents aster data structures
All theses aster data structures inherit of a class named DataStructure

Class DataStructure
This class contains (among others) the name of sd_aster
Also contains: memory allocation and object ‘.TCO’ (aster type of a data structure, ex : sd_maillage)
Warning: changes in sd_aster naming !!!
The name is no longer based on the name give by user in the commands file
Before in Aster legacy: ‘MAIL .COORDO’ (for instance : MAIL=LIRE_MAILLAGE())
Now, first 8 characters are automatically generated: ‘00000001.COORDO’

4

Data structures (3/4)

Wrap C++ of Jeveux objects
JeveuxVector, JeveuxCollection and JeveuxBidirectionalMap
Used in C++ data structures

Example, class ModelClass
class ModelClass: public DataStructure

{

protected:

// (…)

/** @brief Vecteur Jeveux '.MAILLE' */

JeveuxVectorLong _typeOfCells;

// (…)

public:

ModelClass(const std::string name = ResultNaming::getNewResultName()):

DataStructure(name, 8, "MODELE"),

_typeOfCells(JeveuxVectorLong(getName() + ".MAILLE ")),

// (…)

// shared pointer on this object

typedef boost::shared_ptr< ModelClass > ModelPtr;

{};

};5

Data structures (4/4)

Note
For more flexibility, we choose to use pointers…
… But pointers in C++ doesn’t used garbage collector
So, in asterxx, we have widely used smart-pointers (i.e. : pointers with garbage collector)
All DataStructure are therefore wrap in a boost::shared_ptr
Transparent and easy-to-use
Protect use of “new” in C++, no need to use “delete”
Never use raw pointer

6

Data structures in python (1/2)

To make data structures accessible in python, we use the library Boost-
python

Boost-python is:
A way to define classes and functions exposed
Explain to code that you want that a C++ class name TotoClass (for class) must be exposed to user in a python shell with
the name Toto (for instance too !)

Natively compatible with python garbage collector
No more need to use DETRUIRE in commands file

Reasonably easy to use (at least by imitation), example : Model
class_< ModelClass, ModelClass::ModelPtr,

bases< DataStructure > > ("Model", no_init)

.def("__init__", make_constructor(

&initFactoryPtr< ModelClass >))

.def("addModelingOnMesh", &ModelClass::addModelingOnMesh)

7

Data structures in python (2/2)

After writing Boost-python and compile : class ready to use in python
import module code_aster

import code_aster

start code_aster (jeveux for real)

code_aster.init()

have fun with code_aster :

define a empty model !

myOwnModel = code_aster.Model()

unbelievable : you have defined a model that is stored in python variable

with more than 8 characters !

myOwnModel = 3.0

even more incredible : you have deleted a sd_aster without using DETRUIRE !

8

Sources organization (1/2)

New folders
src/bibcxx folder contains:
All data structures
New C++ code (example: MECA_STATIQUE C++ style)

src/code_aster folder contains essentially:
Subfolder Cata which contains capy files (syntax definition of commands file) and the new syntax checker
Subfolder Commands which contains interfaces which call old Fortran operators from a aster command
Practically: 2 items, name of the commands et type of the results of the commands

from ..Objects import Model

from .ExecuteCommand import ExecuteCommand

class ModelAssignment(ExecuteCommand):

command_name = "AFFE_MODELE"

def create_result(self, keywords):

self._result = Model()

def post_exec(self, keywords):

self._result.setMesh(keywords["MAILLAGE“])

AFFE_MODELE = ModelAssignment.run

9

Sources organization (2/2)

bibcxx
Contains lot of subfolders (Algorithms, DataFields, …)
Important subfolder: PythonBindings
Define python interface to C++ objects

Usually headers define functions, classes and member functions
and .cxx files implement functions and member functions

10

Link between data structures and Fortran

Jeveux objects are still build in Fortran (in most cases)

2 possibilities:
Use of aster commands => call of Fortran operators from python
Use of build member function => call of Fortan operators from C++

How is build the link between C++ and jeveux objects
With the name!
OP* allocate a set of jeveux objects which are pointed by wrappers in C++ class

Then garbage collector is operational
Automatic call of JEDETR

11

Asterxx in a (big) nutshell (1/4)

From a commands file
import code_aster

from code_aster.Commands import *

code_aster.init()

mail1 = LIRE_MAILLAGE(FORMAT = "MED")

model = AFFE_MODELE(MAILLAGE = mail1,

AFFE = _F(MODELISATION = "3D« ,

PHENOMENE = "MECANIQUE",

TOUT = "OUI",),)

How to put together all what I said?

First, have a look to src/code_aster/Commands/affe_modele.py

12

Asterxx in a (big) nutshell (2/4)

First, have a look to src/code_aster/Commands/affe_modele.py
(…)

class ModelAssignment(ExecuteCommand):

What is the name of the defined command ? => Creation of link between command and “capy”

command_name = "AFFE_MODELE"

What is the aster type of the result produced by the command ?

def create_result(self, keywords):

self._result = Model()

What must be done at the end of the command (after calling OP*)

def post_exec(self, keywords):

self._result.setMesh(keywords["MAILLAGE"])

What is the name that users will use to call the command ?

AFFE_MODELE = ModelAssignment.run

When user will type : AFFE_MODELE(), it is ModelAssignment.run which will be call

And then ModelAssignment.run will call OP0018 after reading capy (for AFFE_MODELE, op=18 in capy)

13

Asterxx in a (big) nutshell (3/4)

Then, what is Model()?
Go to src/bibcxx/PythonBindings/ModelInterface.cxx

// (…)

#include "PythonBindings/ModelInterface.h“

// (…)

class_< ModelClass, ModelClass::ModelPtr,

bases< DataStructure > > ("Model", no_init)

// (…)

.def("addModelingOnMesh", &ModelInstance::addModelingOnMesh)

.def("addModelingOnGroupOfCells", &ModelInstance::addModelingOnGroupOfCells)

.def("addModelingOnGroupOfNodes", &ModelInstance::addModelingOnGroupOfNodes)

.def("build", &ModelClass::build)

//(…)

In summary, Model (in python) is link (the same as) to ModelClass in C++ describes in
src/bibcxx/Modeling/Model.h

14

Asterxx in a (big) nutshell (4/4)

Then, what is ModelInstance()?
Go to src/bibcxx/Modeling/Model.h

// (…)

class ModelClass: public DataStructure

{

protected:

// (…)

/** @brief Vecteur Jeveux '.MAILLE' */

JeveuxVectorLong _typeOfCells;

/** @brief Vecteur Jeveux '.NOEUD' */

JeveuxVectorLong _typeOfNodes;

/** @brief Vecteur Jeveux '.PARTIT' */

JeveuxVectorChar8 _partition;

// (…)

ModelClass is a C++ class containing jeveux objects (such as ‘.MAILLE’, ‘.NOEUD’, …)
So, it’s just a sd_modele with all its jeveux objects!

15

Asterxx and development (1/2)

Develop in Fortran
Old-style
Almost nothing changes (Fortran, capy, catalogues, …)
What changes?
Write a python file in src/code_aster/Commands/*.py to link name of a command to a capy
Write (maybe, only if you need) a new data structure
A C++ class in src/bibcxx/… to describe what is inside the data structure
A Boost-python file in src/bibcxx/PythonBindings/… to make data structure available in python

Develop in python
With the new “object oriented” style
Looks like macro python
For most developers
Ask the core team for new features (data field handling, data structure allocation, …)
Read the documentation

16

Asterxx and development (2/2)

Develop in C++
Essentially for core team
For specific needs (for instance : performance issue)

17

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about code_aster training materials.

Do not hesitate to share with us your comments on the code_aster forum

dedicated thread.

http://www.code-aster.org/forum2/viewtopic.php?id=17343

